mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: …en fixed in v0.18 Pull Request resolved: https://github.com/pytorch/pytorch/pull/22184 Differential Revision: D15982627 Pulled By: bddppq fbshipit-source-id: 8725d5b5e5b68e029ffb08af12b416bd310c9638
77 lines
2.6 KiB
Python
77 lines
2.6 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from hypothesis import assume, given, settings
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class ConvTransposeTest(hu.HypothesisTestCase):
|
|
@given(stride=st.integers(1, 2),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
adj=st.integers(0, 2),
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 8),
|
|
output_channels=st.integers(1, 8),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
training_mode=st.booleans(),
|
|
compute_dX=st.booleans(),
|
|
**mu.gcs)
|
|
@settings(max_examples=2, timeout=100)
|
|
def test_convolution_transpose_gradients(self, stride, pad, kernel, adj,
|
|
size, input_channels,
|
|
output_channels, batch_size,
|
|
use_bias, training_mode,
|
|
compute_dX, gc, dc):
|
|
training = 1 if training_mode else 0
|
|
assume(adj < stride)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
input_channels, output_channels, kernel, kernel)\
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
op = core.CreateOperator(
|
|
"ConvTranspose",
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
pad=pad,
|
|
adj=adj,
|
|
training_mode=training,
|
|
no_gradient_to_input=not compute_dX,
|
|
)
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
self.assertDeviceChecks(dc, op, inputs, [0], threshold=0.001)
|
|
|
|
if training_mode:
|
|
if use_bias and compute_dX:
|
|
# w, b, X
|
|
outputs_to_check = [1, 2, 0]
|
|
elif use_bias:
|
|
# w, b
|
|
outputs_to_check = [1, 2]
|
|
elif compute_dX:
|
|
# w, X
|
|
outputs_to_check = [1, 0]
|
|
else:
|
|
# w
|
|
outputs_to_check = [1]
|
|
for i in outputs_to_check:
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|