pytorch/torch/nn/modules/module.py
Sam Gross 7e4ddcfe8a Remove names from register_hook calls (#446)
The register hook calls now return an object that can be used to remove
the hook. For example,

   >>> h = module.register_forward_hook(callback)
   >>> h.remove()  # removes hook

Or as a context manager:

   >>> with module.register_forward_hook(callback):
   ...     pass

This makes it easier for libraries to use hooks without worrying about
name collisions.
2017-01-13 15:57:03 -05:00

293 lines
10 KiB
Python

from itertools import chain
from collections import OrderedDict
import torch
from ..backends.thnn import backend as thnn_backend
from ..parameter import Parameter
from torch.autograd import Variable
import torch.utils.hooks as hooks
class Module(object):
"""Base class for all Modules defined in the nn package.
Even the Container class derives from it.
"""
def __init__(self):
self._backend = thnn_backend
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._backward_hooks = OrderedDict()
self._forward_hooks = OrderedDict()
self.training = True
for name, param in self._parameters.items():
if not isinstance(param, Parameter):
if isinstance(param, Variable):
raise TypeError("can't use a Variable as a module "
"parameter. Convert it to torch.nn.Parameter first.")
if param is not None:
param = Parameter(param)
self._parameters[name] = param
def forward(self, *input):
"""Defines the computation performed at every call.
Should be overriden by all subclasses.
"""
raise NotImplementedError
def register_buffer(self, name, tensor):
"""Adds a persistent buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's ``running_mean``
is not a parameter, but is part of the persistent state.
Buffers can be accessed as attributes using given names.
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
"""
self._buffers[name] = tensor
def register_parameter(self, name, param):
"""Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
"""
if '_parameters' not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call")
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError("cannot assign '{}' object to parameter '{}' "
"(torch.nn.Parameter or None required)"
.format(torch.typename(param), name))
elif param.creator:
raise ValueError(
"Cannot assign non-leaf Variable to parameter '{0}'. Model "
"parameters must be created explicitly. To express '{0}' "
"as a function of another variable, compute the value in "
"the forward() method.".format(name))
else:
self._parameters[name] = param
def _apply(self, fn):
for param in self._parameters.values():
if param is not None:
# Variables stored in modules are graph leaves, and we don't
# want to create copy nodes, so we have to unpack the data.
param.data = fn(param.data)
if param.grad is not None:
param._grad = fn(param._grad)
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
def apply(self, fn):
fn(self)
return self
def cuda(self, device_id=None):
"""Moves all model parameters and buffers to the GPU.
Arguments:
device_id (int, optional): if specified, all parameters will be
copied to that device
"""
return self._apply(lambda t: t.cuda(device_id))
def cpu(self, device_id=None):
"""Moves all model parameters and buffers to the CPU."""
return self._apply(lambda t: t.cpu())
def type(self, dst_type):
return self._apply(lambda t: t.type(dst_type))
def float(self):
"""Casts all parameters and buffers to float datatype."""
return self._apply(lambda t: t.float())
def double(self):
"""Casts all parameters and buffers to double datatype."""
return self._apply(lambda t: t.double())
def half(self):
"""Casts all parameters and buffers to half datatype."""
return self._apply(lambda t: t.half())
def register_backward_hook(self, hook):
"""Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module
inputs are computed. The hook should have the following signature::
hook(module, grad_input, grad_output) -> Tensor or None
The :attr:`grad_input` and :attr:`grad_output` may be tuples if the
module has multiple inputs or outputs. The hook should not modify its
arguments, but it can optionally return a new gradient with respect to
input that will be used in place of :attr:`grad_input` in subsequent
computations.
This function returns a handle with a method ``handle.remove()``
that removes the hook from the module.
"""
handle = hooks.RemovableHandle(self._backward_hooks)
self._backward_hooks[id(handle)] = hook
return handle
def register_forward_hook(self, hook):
"""Registers a forward hook on the module.
The hook will be called every time :func:`forward` computes an output.
It should have the following signature::
hook(module, input, output) -> None
The hook should not modify the input or output.
This function returns a handle with a method ``handle.remove()``
that removes the hook from the module.
"""
handle = hooks.RemovableHandle(self._forward_hooks)
self._forward_hooks[id(handle)] = hook
return handle
def __call__(self, *input, **kwargs):
result = self.forward(*input, **kwargs)
for hook in self._forward_hooks.values():
hook_result = hook(self, input, result)
if hook_result is not None:
raise RuntimeError(
"forward hooks should never return any values, but '{}'"
"didn't return None".format(hook))
var = result
while not isinstance(var, Variable):
var = var[0]
creator = var.creator
if creator is not None and len(self._backward_hooks) > 0:
if creator._backward_hooks is None:
creator._backward_hooks = OrderedDict()
for hook in self._backward_hooks.values():
wrapper = hooks.partial_apply_hook(hook, self)
creator._backward_hooks[id(wrapper)] = wrapper
return result
def __getattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return _parameters[name]
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name]
return object.__getattribute__(self, name)
def __setattr__(self, name, value):
params = self.__dict__.get('_parameters')
if isinstance(value, Parameter) or (params and name in params):
self.register_parameter(name, value)
else:
object.__setattr__(self, name, value)
def __delattr__(self, name):
if name in self._parameters:
del self._parameters[name]
else:
object.__delattr__(self, name)
def state_dict(self, destination=None, prefix=''):
"""Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Example:
>>> print(module.state_dict().keys())
['bias', 'weight']
"""
if destination is None:
destination = OrderedDict()
for name, param in chain(self._buffers.items(), self._parameters.items()):
if param is not None:
destination[prefix + name] = param
return destination
def load_state_dict(self, state_dict, prefix=''):
"""Replaces module parameters using values from a given state_dict.
This will load all values from the state dict (including such that
weren't registered before loading).
Arguments:
state_dict (dict): A dict containing loaded parameters and
persistent buffers.
"""
for name, param in self._parameters.items():
new_param = state_dict.get(prefix + name, param)
if not isinstance(new_param, Parameter) and new_param is not None:
raise TypeError(
"expected torch.autograd.Parameter for key '{}' (got {})"
.format(prefix + name, torch.typename(new_param)))
self._parameters[name] = new_param
for name, buf in self._buffers.items():
self._buffers[name] = state_dict.get(prefix + name, buf)
def parameters(self, memo=None):
"""Returns an iterator over module parameters.
This is typically passed to an optimizer.
Example:
>>> for param in model.parameters():
>>> print(type(param.data), param.size())
<class 'torch.FloatTensor'> (20L,)
<class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)
"""
if memo is None:
memo = set()
for p in self._parameters.values():
if p is not None and p not in memo:
memo.add(p)
yield p
def children(self):
"""Returns an iterator over children modules."""
if False:
yield
def modules(self, memo=None):
if memo is None:
memo = set()
if self not in memo:
memo.add(self)
yield self
def train(self):
"""Sets the module in training mode.
This has any effect only on modules such as Dropout or BatchNorm.
"""
self.training = True
return self
def eval(self):
"""Sets the module in evaluation mode.
This has any effect only on modules such as Dropout or BatchNorm.
"""
self.training = False
return self
def zero_grad(self):
"""Sets gradients of all model parameters to zero."""
for p in self.parameters():
p.grad.zero_()
def share_memory(self):
return self._apply(lambda t: t.share_memory_())