mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35265 In graph mode we need to observer the activation tensor for dynamic quantization. This observer should behave the same way as the quantization functions called in the dynamic operator. Currently for qlinear_dynamic we call quant_utils::ChooseQuantizationParams which has its own logic for calculating scale and zero_point. We mimic those calculations in the new observer. Test Plan: python test/test_quantization.py ObserverTest Imported from OSS Differential Revision: D20630988 fbshipit-source-id: 7e7aca77590f965dcb423a705e68d030aaf98550
1588 lines
69 KiB
Python
1588 lines
69 KiB
Python
import unittest
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.quantized as nnq
|
|
import torch.nn.intrinsic as nni
|
|
import torch.nn.intrinsic.quantized as nniq
|
|
import torch.nn.intrinsic.qat as nniqat
|
|
from torch.nn.utils.rnn import PackedSequence
|
|
from torch.quantization import \
|
|
get_observer_dict, default_weight_observer, \
|
|
quantize, prepare, convert, prepare_qat, quantize_qat, fuse_modules, \
|
|
quantize_dynamic, default_qconfig, default_debug_qconfig, default_qat_qconfig, \
|
|
default_dynamic_qconfig, per_channel_dynamic_qconfig, HistogramObserver, MinMaxObserver, \
|
|
PerChannelMinMaxObserver, RecordingObserver, MovingAverageMinMaxObserver, \
|
|
MovingAveragePerChannelMinMaxObserver, QuantWrapper, default_eval_fn, \
|
|
float16_dynamic_qconfig, MinMaxDynamicQuantObserver
|
|
|
|
from torch.quantization import QConfig
|
|
from torch.quantization import default_histogram_observer
|
|
from torch.quantization import default_observer
|
|
from torch.quantization import default_per_channel_weight_observer
|
|
from torch.quantization import default_per_channel_qconfig
|
|
from torch.quantization._quantize_script import quantize_script
|
|
|
|
from torch.testing._internal.common_utils import run_tests, TEST_WITH_UBSAN, IS_WINDOWS
|
|
from torch.testing._internal.common_quantization import QuantizationTestCase, \
|
|
AnnotatedSingleLayerLinearModel, SingleLayerLinearModel, \
|
|
AnnotatedConvModel, ConvModel, \
|
|
AnnotatedConvBnModel, ConvBnModel, \
|
|
SkipQuantModel, QuantStubModel, \
|
|
ModelForFusion, ModelWithSequentialFusion, ManualLinearQATModel, ManualConvLinearQATModel, \
|
|
ModelWithFunctionals, \
|
|
test_only_eval_fn, test_only_train_fn, \
|
|
prepare_dynamic, convert_dynamic, SingleLayerLinearDynamicModel, \
|
|
TwoLayerLinearModel, NestedModel, ResNetBase, LSTMDynamicModel, \
|
|
ModelWithNoQconfigPropagation
|
|
|
|
from torch.testing._internal.common_quantization import AnnotatedTwoLayerLinearModel, AnnotatedNestedModel, \
|
|
AnnotatedSubNestedModel, AnnotatedCustomConfigNestedModel
|
|
from torch.testing._internal.common_quantized import override_quantized_engine
|
|
from hypothesis import given
|
|
from hypothesis import strategies as st
|
|
import torch.testing._internal.hypothesis_utils as hu
|
|
hu.assert_deadline_disabled()
|
|
import io
|
|
import copy
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class EagerModePostTrainingQuantTest(QuantizationTestCase):
|
|
@given(qconfig=st.sampled_from((torch.quantization.default_qconfig, torch.quantization.default_per_channel_qconfig)))
|
|
def test_single_layer(self, qconfig):
|
|
r"""Quantize SingleLayerLinearModel which has one Linear module, make sure it is swapped
|
|
to nnq.Linear which is the quantized version of the module
|
|
"""
|
|
model = AnnotatedSingleLayerLinearModel()
|
|
model.qconfig = qconfig
|
|
model = prepare(model)
|
|
# Check if observers and quant/dequant nodes are inserted
|
|
self.checkNoPrepModules(model)
|
|
self.checkHasPrepModules(model.fc1)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkNoPrepModules(model)
|
|
self.checkHasPrepModules(model.fc1)
|
|
self.checkWrappedQuantizedLinear(model.fc1)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API - out of place version
|
|
base = AnnotatedSingleLayerLinearModel()
|
|
base.qconfig = qconfig
|
|
keys_before = set(list(base.state_dict().keys()))
|
|
model = quantize(base, test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
keys_after = set(list(base.state_dict().keys()))
|
|
self.assertEqual(keys_before, keys_after) # simple check that nothing changed
|
|
|
|
# in-place version
|
|
model = AnnotatedSingleLayerLinearModel()
|
|
model.qconfig = qconfig
|
|
quantize(model, test_only_eval_fn, self.calib_data, inplace=True)
|
|
checkQuantized(model)
|
|
|
|
def test_two_layers(self):
|
|
r"""TwoLayerLinearModel has two Linear modules but we only quantize the second one
|
|
`fc2`, and `fc1`is not quantized
|
|
"""
|
|
model = AnnotatedTwoLayerLinearModel()
|
|
model = prepare(model)
|
|
|
|
self.checkNoPrepModules(model)
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model.fc1)
|
|
self.checkHasPrepModules(model.fc2)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.fc1)
|
|
self.checkHasPrepModules(model.fc2)
|
|
self.assertEqual(type(model.fc1), torch.nn.Linear)
|
|
self.checkWrappedQuantizedLinear(model.fc2)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedTwoLayerLinearModel(), test_only_eval_fn,
|
|
self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_nested1(self):
|
|
r"""Test quantization for nested model, top level 'fc3' and
|
|
'fc1' of submodule 'sub2', 'sub2.fc2' is not quantized
|
|
"""
|
|
model = AnnotatedNestedModel()
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkNoPrepModules(model.sub2)
|
|
self.checkHasPrepModules(model.sub2.fc1)
|
|
self.checkNoPrepModules(model.sub2.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
model = prepare(model)
|
|
checkPrepModules(model, True)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkLinear(model.sub1.fc)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc1)
|
|
self.checkLinear(model.sub2.fc2)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedNestedModel(), test_only_eval_fn,
|
|
self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
def test_nested2(self):
|
|
model = AnnotatedSubNestedModel()
|
|
model = prepare(model)
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkHasPrepModules(model.sub2)
|
|
self.checkNoPrepModules(model.sub2.module.fc1)
|
|
self.checkNoPrepModules(model.sub2.module.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
checkPrepModules(model, True)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkLinear(model.sub1.fc)
|
|
self.assertEqual(type(model.sub1.relu), torch.nn.ReLU)
|
|
self.checkQuantizedLinear(model.sub2.module.fc1)
|
|
self.checkQuantizedLinear(model.sub2.module.fc2)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedSubNestedModel(), test_only_eval_fn,
|
|
self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_nested3(self):
|
|
r"""More complicated nested test case with child qconfig overrides
|
|
parent qconfig
|
|
"""
|
|
model = AnnotatedCustomConfigNestedModel()
|
|
model = prepare(model)
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkNoPrepModules(model.sub2)
|
|
self.checkHasPrepModules(model.sub2.fc1)
|
|
self.checkHasPrepModules(model.sub2.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
checkPrepModules(model, True)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc1)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc2)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedCustomConfigNestedModel(), test_only_eval_fn,
|
|
self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_skip_quant(self):
|
|
r"""The case when we want to skip quantizing some layers
|
|
"""
|
|
|
|
model = SkipQuantModel()
|
|
model = prepare(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkLinear(model.fc)
|
|
self.checkQuantDequant(model.sub)
|
|
self.checkQuantizedLinear(model.sub.module.fc1)
|
|
self.checkQuantizedLinear(model.sub.module.fc2)
|
|
self.assertEqual(type(model.sub.module.relu), nnq.ReLU)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(SkipQuantModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
def test_manual(self):
|
|
r"""User inserts QuantStub and DeQuantStub in model code
|
|
and call the quantization utility functions.
|
|
"""
|
|
model = QuantStubModel()
|
|
# propagate the qconfig of parents to children, model is changed
|
|
# inplace
|
|
model = prepare(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.fc), nnq.Linear)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(QuantStubModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
@given(qconfig=st.sampled_from((torch.quantization.default_qconfig, torch.quantization.default_per_channel_qconfig)))
|
|
def test_resnet_base(self, qconfig):
|
|
r"""Test quantization for bottleneck topology used in resnet/resnext
|
|
and add coverage for conversion of average pool and float functional
|
|
"""
|
|
model = ResNetBase().float().eval()
|
|
model = QuantWrapper(model)
|
|
model.qconfig = qconfig
|
|
fuse_list = ['module.conv1', 'module.bn1', 'module.relu1']
|
|
fuse_modules(model, fuse_list, inplace=True)
|
|
model = prepare(model)
|
|
self.checkObservers(model)
|
|
test_only_eval_fn(model, self.img_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.module.conv1), nn.intrinsic.quantized.ConvReLU2d)
|
|
self.assertEqual(type(model.module.myop), nn.quantized.QFunctional)
|
|
self.assertEqual(type(model.module.avgpool), nn.AdaptiveAvgPool2d)
|
|
test_only_eval_fn(model, self.img_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
@given(qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_save_load_state_dict(self, qengine):
|
|
r"""Test PTQ flow of creating a model and quantizing it and saving the quantized state_dict
|
|
Load the quantized state_dict for eval and compare results against original model
|
|
"""
|
|
if qengine == 'qnnpack':
|
|
if IS_WINDOWS or TEST_WITH_UBSAN:
|
|
return
|
|
with override_quantized_engine(qengine):
|
|
model = TwoLayerLinearModel()
|
|
model = torch.quantization.QuantWrapper(model)
|
|
model.qconfig = torch.quantization.get_default_qconfig(qengine)
|
|
|
|
model = prepare(model)
|
|
# calibrate
|
|
test_only_eval_fn(model, self.calib_data)
|
|
model = convert(model)
|
|
x = torch.rand(2, 5, dtype=torch.float)
|
|
ref = model(x)
|
|
|
|
quant_state_dict = model.state_dict()
|
|
|
|
# Create model again for eval
|
|
model = TwoLayerLinearModel()
|
|
model = torch.quantization.QuantWrapper(model)
|
|
model.qconfig = torch.quantization.get_default_qconfig(qengine)
|
|
model = prepare(model)
|
|
model = convert(model)
|
|
new_state_dict = model.state_dict()
|
|
|
|
# Check to make sure the state dict keys match original model after convert.
|
|
self.assertEqual(set(new_state_dict.keys()), set(quant_state_dict.keys()))
|
|
|
|
model.load_state_dict(quant_state_dict)
|
|
|
|
out = model(x)
|
|
self.assertEqual(ref, out)
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class PostTrainingDynamicQuantTest(QuantizationTestCase):
|
|
def test_single_layer(self):
|
|
r"""Dynamic Quantize SingleLayerLinearDynamicModel which has one Linear module,
|
|
make sure it is swapped to nnqd.Linear which is the quantized version of
|
|
the module
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = SingleLayerLinearDynamicModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dict = {
|
|
'fc1': qconfig
|
|
}
|
|
prepare_dynamic(model, qconfig_dict)
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkDynamicQuantizedLinear(model.fc1, dtype)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API - out of place version
|
|
base = SingleLayerLinearDynamicModel()
|
|
keys_before = set(list(base.state_dict().keys()))
|
|
model = quantize_dynamic(base, qconfig_dict)
|
|
checkQuantized(model)
|
|
keys_after = set(list(base.state_dict().keys()))
|
|
self.assertEqual(keys_before, keys_after) # simple check that nothing changed
|
|
|
|
# in-place version
|
|
model = SingleLayerLinearDynamicModel()
|
|
quantize_dynamic(model, qconfig_dict, inplace=True)
|
|
checkQuantized(model)
|
|
|
|
# Test set qconfig
|
|
model = SingleLayerLinearDynamicModel()
|
|
quantize_dynamic(model, set([nn.Linear]), inplace=True, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_two_layers(self):
|
|
r"""TwoLayerLinearModel has two Linear modules but we only quantize the second one
|
|
`fc2`, and `fc1`is not quantized
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = TwoLayerLinearModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dict = {
|
|
'fc2': qconfig
|
|
}
|
|
prepare_dynamic(model, qconfig_dict)
|
|
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.fc1), torch.nn.Linear)
|
|
self.checkDynamicQuantizedLinear(model.fc2, dtype=dtype)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize_dynamic(TwoLayerLinearModel().eval(), qconfig_dict)
|
|
checkQuantized(model)
|
|
|
|
# Test set API
|
|
model = quantize_dynamic(TwoLayerLinearModel().eval(), {'fc2'}, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_nested1(self):
|
|
r"""Test quantization for nested model, top level 'fc3' and
|
|
'fc1' of submodule 'sub2', 'sub2.fc2' is not quantized
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = NestedModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dict = {
|
|
'fc3': qconfig,
|
|
'sub2.fc1': qconfig
|
|
}
|
|
|
|
prepare_dynamic(model, qconfig_dict)
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkLinear(model.sub1.fc)
|
|
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
|
|
self.checkLinear(model.sub2.fc2)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize_dynamic(NestedModel().eval(), qconfig_dict)
|
|
checkQuantized(model)
|
|
|
|
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2.fc1'}, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_nested2(self):
|
|
r"""Another test case for quantized, we will quantize all submodules
|
|
of submodule sub2
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = NestedModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dict = {
|
|
'fc3': qconfig,
|
|
'sub2': qconfig
|
|
}
|
|
prepare_dynamic(model, qconfig_dict)
|
|
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkLinear(model.sub1.fc)
|
|
self.assertEqual(type(model.sub1.relu), torch.nn.ReLU)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
|
|
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize_dynamic(NestedModel().eval(), qconfig_dict, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
# Test set API
|
|
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2'}, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_nested3(self):
|
|
r"""More complicated nested test case with child qconfig overrides
|
|
parent qconfig
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = NestedModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dynamic_dict = {
|
|
'fc3': qconfig,
|
|
'sub2': qconfig,
|
|
'sub2.fc1': qconfig
|
|
}
|
|
prepare_dynamic(model, qconfig_dynamic_dict)
|
|
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
|
|
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize_dynamic(NestedModel().eval(), qconfig_dynamic_dict)
|
|
checkQuantized(model)
|
|
|
|
# Test set API
|
|
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2', 'sub2.fc1'}, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_type_match_rule(self):
|
|
r"""Test quantization for nested model, top level 'fc3' and
|
|
'fc1' of submodule 'sub2', All 'torch.nn.Linear' modules are quantized
|
|
"""
|
|
for dtype in [torch.qint8, torch.float16]:
|
|
model = NestedModel().eval()
|
|
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
|
|
qconfig_dict = {
|
|
'fc3': None,
|
|
'sub2.fc1': None,
|
|
torch.nn.Linear: qconfig
|
|
}
|
|
|
|
prepare_dynamic(model, qconfig_dict)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkDynamicQuantizedLinear(model.sub1.fc, dtype=dtype)
|
|
self.checkLinear(model.fc3)
|
|
self.checkLinear(model.sub2.fc1)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize_dynamic(NestedModel().eval(), qconfig_dict, dtype=dtype)
|
|
checkQuantized(model)
|
|
|
|
def test_per_channel_quantize(self):
|
|
r"""Test quantization for per_channel dynamic quantization
|
|
"""
|
|
model = NestedModel().eval()
|
|
qconfig_dict = {
|
|
torch.nn.Linear: per_channel_dynamic_qconfig
|
|
}
|
|
|
|
prepare_dynamic(model, qconfig_dict)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert_dynamic(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkDynamicQuantizedLinear(model.sub1.fc, dtype=torch.qint8)
|
|
self.checkDynamicQuantizedLinear(model.fc3, dtype=torch.qint8)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=torch.qint8)
|
|
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=torch.qint8)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data, check_save_load=True)
|
|
|
|
checkQuantized(model)
|
|
# test one line API
|
|
model = quantize_dynamic(NestedModel().eval(), qconfig_dict)
|
|
checkQuantized(model)
|
|
|
|
@unittest.skip("temporarily disable the test")
|
|
@given(qengine=st.sampled_from(("fbgemm",)))
|
|
def test_quantized_rnn(self, qengine):
|
|
d_in, d_hid = 2, 2
|
|
|
|
# TODO: qlinear_prepack_fp16 currently doesn't support QNNPACK
|
|
# re-add "qnnpack" to the engine set when this is supported
|
|
|
|
with override_quantized_engine(qengine):
|
|
model = LSTMDynamicModel().eval()
|
|
cell = model.lstm
|
|
|
|
# Replace parameter values s.t. the range of values is exactly
|
|
# 255, thus we will have 0 quantization error in the quantized
|
|
# GEMM call. This i s for testing purposes.
|
|
#
|
|
# Note that the current implementation does not support
|
|
# accumulation values outside of the range representable by a
|
|
# 16 bit integer, instead resulting in a saturated value. We
|
|
# must take care that in our test we do not end up with a dot
|
|
# product that overflows the int16 range, e.g.
|
|
# (255*127+255*127) = 64770. So, we hardcode the test values
|
|
# here and ensure a mix of signedness.
|
|
vals = [[100, -155],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155]]
|
|
if isinstance(cell, torch.nn.LSTM):
|
|
num_chunks = 4
|
|
vals = vals[:d_hid * num_chunks]
|
|
cell.weight_ih_l0 = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float),
|
|
requires_grad=False)
|
|
cell.weight_hh_l0 = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float),
|
|
requires_grad=False)
|
|
|
|
ref = copy.deepcopy(cell)
|
|
|
|
model_int8 = quantize_dynamic(model=model, dtype=torch.qint8)
|
|
model_fp16 = quantize_dynamic(model=model, dtype=torch.float16)
|
|
|
|
# Smoke test extra reprs
|
|
self.assertTrue('DynamicQuantizedLSTM' in str(model_int8))
|
|
self.assertTrue('DynamicQuantizedLSTM' in str(model_fp16))
|
|
cell_int8 = model_int8.lstm
|
|
cell_fp16 = model_fp16.lstm
|
|
|
|
assert type(cell_int8) == torch.nn.quantized.dynamic.LSTM, \
|
|
'torch.nn.LSTM should be converted to torch.nn.quantized.dynamic.LSTM after quantize_dynamic'
|
|
assert type(cell_fp16) == torch.nn.quantized.dynamic.LSTM, \
|
|
'torch.nn.LSTM should be converted to torch.nn.quantized.dynamic.LSTM after quantize_dynamic'
|
|
|
|
niter = 10
|
|
x = torch.tensor([[100, -155],
|
|
[-155, 100],
|
|
[100, -155]], dtype=torch.float).unsqueeze(0).repeat(niter, 1, 1)
|
|
|
|
h0_vals = [[-155, 100],
|
|
[-155, 155],
|
|
[100, -155]]
|
|
|
|
hx = torch.tensor(h0_vals, dtype=torch.float).unsqueeze(0)
|
|
cx = torch.tensor(h0_vals, dtype=torch.float).unsqueeze(0)
|
|
|
|
if isinstance(ref, torch.nn.LSTM):
|
|
hiddens = (hx, cx)
|
|
|
|
ref_out, ref_hid = ref(x, hiddens)
|
|
|
|
# Compare int8 quantized to unquantized
|
|
output_int8, final_hiddens_int8 = cell_int8(x, hiddens)
|
|
|
|
torch.testing.assert_allclose(output_int8, ref_out)
|
|
self.assertEqual(output_int8, ref_out)
|
|
for out_val, ref_val in zip(final_hiddens_int8, ref_hid):
|
|
torch.testing.assert_allclose(out_val, ref_val)
|
|
|
|
class ScriptWrapper(torch.nn.Module):
|
|
def __init__(self, cell):
|
|
super(ScriptWrapper, self).__init__()
|
|
self.cell = cell
|
|
|
|
def forward(self, x, hiddens):
|
|
# type: (torch.Tensor, Tuple[torch.Tensor, torch.Tensor])
|
|
# -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
|
return self.cell(x, hiddens)
|
|
|
|
# TODO: TorchScript overloads don't work without this wrapper
|
|
cell_script = torch.jit.script(ScriptWrapper(cell_int8))
|
|
out_script, hid_script = cell_script(x, hiddens)
|
|
self.assertEqual(len(out_script), len(ref_out))
|
|
for out_val, ref_val in zip(out_script, ref_out):
|
|
torch.testing.assert_allclose(out_val, ref_val)
|
|
|
|
# Test save/load
|
|
b = io.BytesIO()
|
|
torch.jit.save(cell_script, b)
|
|
b.seek(0)
|
|
loaded = torch.jit.load(b)
|
|
out_loaded, hid_loaded = loaded(x, hiddens)
|
|
for loaded_val, ref_val in zip(out_loaded, ref_out):
|
|
torch.testing.assert_allclose(loaded_val, ref_val)
|
|
|
|
# Compare fp16 quantized to unquantized
|
|
output_fp16, final_hiddens_fp16 = cell_fp16(x, hiddens)
|
|
|
|
torch.testing.assert_allclose(output_fp16, ref_out)
|
|
self.assertEqual(output_fp16, ref_out)
|
|
for out, ref_val in zip(final_hiddens_fp16, ref_hid):
|
|
torch.testing.assert_allclose(out, ref_val)
|
|
|
|
# Test tracing
|
|
# TODO: TorchScript overloads don't work without this wrapper
|
|
cell_trace = torch.jit.trace(ScriptWrapper(cell_int8), (x, (hx, cx)))
|
|
out_script, hid_script = cell_trace(x, hiddens)
|
|
for out_val, ref_val in zip(out_script, ref_out):
|
|
torch.testing.assert_allclose(out_val, ref_val)
|
|
|
|
# print(cell_trace.code)
|
|
|
|
# Test save/load
|
|
b = io.BytesIO()
|
|
torch.jit.save(cell_trace, b)
|
|
b.seek(0)
|
|
loaded = torch.jit.load(b)
|
|
out_loaded, hid_loaded = loaded(x, hiddens)
|
|
for loaded_val, ref_val in zip(out_loaded, ref_out):
|
|
torch.testing.assert_allclose(loaded_val, ref_val)
|
|
|
|
# Compare fp16 quantized to unquantized
|
|
output_fp16, final_hiddens_fp16 = cell_fp16(x, hiddens)
|
|
|
|
torch.testing.assert_allclose(output_fp16, ref_out)
|
|
self.assertEqual(output_fp16, ref_out)
|
|
for out, ref_val in zip(final_hiddens_fp16, ref_hid):
|
|
torch.testing.assert_allclose(out, ref_val)
|
|
|
|
class ScriptWrapperPacked(torch.nn.Module):
|
|
def __init__(self, cell):
|
|
super(ScriptWrapperPacked, self).__init__()
|
|
self.cell = cell
|
|
|
|
def forward(self,
|
|
x, # type: PackedSequence
|
|
hiddens # type: Tuple[torch.Tensor, torch.Tensor]
|
|
):
|
|
# type: (...) -> Tuple[PackedSequence, Tuple[torch.Tensor, torch.Tensor]]
|
|
return self.cell(x, hiddens)
|
|
|
|
cell_packed = torch.jit.script(ScriptWrapperPacked(cell_int8))
|
|
packed_input = torch.nn.utils.rnn.pack_padded_sequence(x, torch.tensor([10, 5, 2]))
|
|
ref_out_packed, ref_hid_packed = ref(packed_input, hiddens)
|
|
output_packed, hiddens_packed = cell_packed(packed_input, hiddens)
|
|
|
|
for packed_val, ref_val in zip(output_packed, ref_out_packed):
|
|
if isinstance(packed_val, torch.Tensor):
|
|
torch.testing.assert_allclose(packed_val, ref_val)
|
|
else:
|
|
self.assertEqual(packed_val, ref_val)
|
|
|
|
# Test save/load
|
|
b = io.BytesIO()
|
|
torch.jit.save(cell_packed, b)
|
|
b.seek(0)
|
|
loaded_packed = torch.jit.load(b)
|
|
out_loaded_packed, hid_loaded_packed = loaded_packed(packed_input, hiddens)
|
|
for packed_val, ref_val in zip(out_loaded_packed, ref_out_packed):
|
|
if isinstance(packed_val, torch.Tensor):
|
|
torch.testing.assert_allclose(packed_val, ref_val)
|
|
else:
|
|
self.assertEqual(packed_val, ref_val)
|
|
|
|
# Test default instantiation
|
|
seq_len = 128
|
|
batch = 16
|
|
input_size = 3
|
|
hidden_size = 7
|
|
num_layers = 2
|
|
bias = True
|
|
bidirectional = False
|
|
|
|
x = torch.rand(seq_len, batch, input_size)
|
|
h = torch.rand(num_layers * (bidirectional + 1), batch, hidden_size)
|
|
c = torch.rand(num_layers * (bidirectional + 1), batch, hidden_size)
|
|
|
|
dtype = torch.qint8
|
|
|
|
cell_dq = torch.nn.quantized.dynamic.LSTM(input_size=input_size,
|
|
hidden_size=hidden_size,
|
|
num_layers=num_layers,
|
|
bias=bias,
|
|
batch_first=False,
|
|
dropout=0.0,
|
|
bidirectional=bidirectional,
|
|
dtype=dtype)
|
|
|
|
y, (h, c) = cell_dq(x, (h, c))
|
|
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class EagerModeQuantizationAwareTrainingTest(QuantizationTestCase):
|
|
def test_manual(self):
|
|
model = ManualLinearQATModel()
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
test_only_train_fn(model, self.train_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.fc1), nnq.Linear)
|
|
self.assertEqual(type(model.fc2), nnq.Linear)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
model = quantize_qat(ManualLinearQATModel(), test_only_train_fn,
|
|
self.train_data)
|
|
checkQuantized(model)
|
|
|
|
def test_eval_only_fake_quant(self):
|
|
r"""Using FakeQuant in evaluation only mode,
|
|
this is useful for estimating accuracy loss when we quantize the
|
|
network
|
|
"""
|
|
model = ManualLinearQATModel()
|
|
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
|
|
model.eval()
|
|
test_only_eval_fn(model, self.calib_data)
|
|
|
|
def test_conv_linear(self):
|
|
model = ManualConvLinearQATModel()
|
|
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_train_fn(model, self.img_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.conv), nnq.Conv2d)
|
|
self.assertEqual(type(model.fc1), nnq.Linear)
|
|
self.assertEqual(type(model.fc2), nnq.Linear)
|
|
test_only_eval_fn(model, self.img_data)
|
|
self.checkScriptable(model, self.img_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
model = ManualConvLinearQATModel()
|
|
model = quantize_qat(model, test_only_train_fn, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
@given(qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_train_save_load_eval(self, qengine):
|
|
r"""Test QAT flow of creating a model, doing QAT and saving the quantized state_dict
|
|
During eval, we first call prepare_qat and conver on the model and then load the state_dict
|
|
and compare results against original model
|
|
"""
|
|
if qengine == 'qnnpack':
|
|
if IS_WINDOWS or TEST_WITH_UBSAN:
|
|
return
|
|
with override_quantized_engine(qengine):
|
|
model = TwoLayerLinearModel()
|
|
model = torch.quantization.QuantWrapper(model)
|
|
model.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
|
|
model = prepare_qat(model)
|
|
|
|
fq_state_dict = model.state_dict()
|
|
|
|
test_only_train_fn(model, self.train_data)
|
|
model = convert(model)
|
|
|
|
quant_state_dict = model.state_dict()
|
|
|
|
x = torch.rand(2, 5, dtype=torch.float)
|
|
ref = model(x)
|
|
|
|
# Create model again for eval. Check result using quantized state_dict
|
|
model = TwoLayerLinearModel()
|
|
model = torch.quantization.QuantWrapper(model)
|
|
model.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
|
|
torch.quantization.prepare_qat(model, inplace=True)
|
|
new_state_dict = model.state_dict()
|
|
|
|
# Check to make sure the model after prepare_qat has the same state_dict as original.
|
|
self.assertEqual(set(fq_state_dict.keys()), set(new_state_dict.keys()))
|
|
|
|
torch.quantization.convert(model, inplace=True)
|
|
model.eval()
|
|
model.load_state_dict(quant_state_dict)
|
|
out = model(x)
|
|
self.assertEqual(ref, out)
|
|
|
|
# Check model created using prepare has same state dict as quantized state_dict
|
|
model = TwoLayerLinearModel()
|
|
model.eval()
|
|
model = torch.quantization.QuantWrapper(model)
|
|
model.qconfig = torch.quantization.get_default_qconfig(qengine)
|
|
torch.quantization.prepare(model, inplace=True)
|
|
torch.quantization.convert(model, inplace=True)
|
|
self.assertEqual(set(model.state_dict().keys()), set(quant_state_dict.keys()))
|
|
model.eval()
|
|
model.load_state_dict(quant_state_dict)
|
|
out = model(x)
|
|
self.assertEqual(ref, out)
|
|
|
|
@unittest.skipUnless(
|
|
'fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.",
|
|
)
|
|
class GraphModePostTrainingQuantTest(QuantizationTestCase):
|
|
def test_single_linear(self):
|
|
r"""Compare the result of quantizing single linear layer in
|
|
eager mode and graph mode
|
|
"""
|
|
# eager mode
|
|
annotated_linear_model = AnnotatedSingleLayerLinearModel().eval()
|
|
linear_model = SingleLayerLinearModel().eval()
|
|
# copy the weight from eager mode so that we can
|
|
# compare the result of the two quantized models later
|
|
linear_model.fc1.weight = torch.nn.Parameter(annotated_linear_model.fc1.module.weight.detach())
|
|
linear_model.fc1.bias = torch.nn.Parameter(annotated_linear_model.fc1.module.bias.detach())
|
|
model_eager = quantize(annotated_linear_model, test_only_eval_fn,
|
|
self.calib_data)
|
|
|
|
qconfig_dict = {'': default_qconfig}
|
|
model_traced = torch.jit.trace(linear_model, self.calib_data[0][0])
|
|
model_script = torch.jit.script(linear_model)
|
|
result_eager = model_eager(self.calib_data[0][0])
|
|
for model_under_test in [model_traced, model_script]:
|
|
model_quantized = quantize_script(
|
|
model_under_test,
|
|
qconfig_dict,
|
|
test_only_eval_fn,
|
|
[self.calib_data],
|
|
inplace=False)
|
|
self.assertEqual(model_quantized(self.calib_data[0][0]), result_eager)
|
|
|
|
def test_observer_with_ignored_function(self):
|
|
r"""Test observers with ignored function and make sure it works in
|
|
graph mode
|
|
"""
|
|
# eager mode
|
|
annotated_linear_model = AnnotatedSingleLayerLinearModel().eval()
|
|
for qconfig in [
|
|
QConfig(
|
|
activation=default_observer,
|
|
weight=default_weight_observer),
|
|
QConfig(
|
|
activation=default_histogram_observer,
|
|
weight=default_weight_observer),
|
|
QConfig(
|
|
activation=default_observer,
|
|
weight=default_per_channel_weight_observer),
|
|
]:
|
|
annotated_linear_model.qconfig = qconfig
|
|
linear_model = SingleLayerLinearModel().eval()
|
|
# copy the weight from eager mode so that we can
|
|
# compare the result of the two quantized models later
|
|
linear_model.fc1.weight = torch.nn.Parameter(annotated_linear_model.fc1.module.weight.detach())
|
|
linear_model.fc1.bias = torch.nn.Parameter(annotated_linear_model.fc1.module.bias.detach())
|
|
model_eager = quantize(annotated_linear_model, test_only_eval_fn,
|
|
self.calib_data)
|
|
|
|
qconfig_dict = {'': qconfig}
|
|
model_traced = torch.jit.trace(linear_model, self.calib_data[0][0])
|
|
model_script = torch.jit.script(linear_model)
|
|
result_eager = model_eager(self.calib_data[0][0])
|
|
for model_under_test in [model_traced, model_script]:
|
|
model_quantized = quantize_script(
|
|
model_under_test,
|
|
qconfig_dict,
|
|
test_only_eval_fn,
|
|
[self.calib_data],
|
|
inplace=False)
|
|
self.assertEqual(model_quantized(self.calib_data[0][0]), result_eager)
|
|
|
|
def test_conv(self):
|
|
r"""Compare the result of quantizing conv layer in
|
|
eager mode and graph mode
|
|
"""
|
|
# eager mode
|
|
annotated_conv_model = AnnotatedConvModel().eval()
|
|
conv_model = ConvModel().eval()
|
|
# copy the weight from eager mode so that we can
|
|
# compare the result of the two quantized models later
|
|
conv_model.conv.weight = torch.nn.Parameter(annotated_conv_model.conv.weight.detach())
|
|
model_eager = quantize(annotated_conv_model, default_eval_fn,
|
|
self.img_data)
|
|
qconfig_dict = {'': default_qconfig}
|
|
model_traced = torch.jit.trace(conv_model, self.img_data[0][0])
|
|
model_script = torch.jit.script(conv_model)
|
|
result_eager = model_eager(self.img_data[0][0])
|
|
for model_under_test in [model_traced, model_script]:
|
|
model_quantized = quantize_script(
|
|
model_under_test,
|
|
qconfig_dict,
|
|
default_eval_fn,
|
|
[self.img_data],
|
|
inplace=False)
|
|
self.assertEqual(model_quantized(self.img_data[0][0]), result_eager)
|
|
|
|
@unittest.skip("This doesn't work right now, re-enable after fold_convbn is fixed")
|
|
def test_conv_bn(self):
|
|
r"""Compare the result of quantizing conv + bn layer in
|
|
eager mode and graph mode
|
|
"""
|
|
# eager mode
|
|
conv_model = AnnotatedConvBnModel().eval()
|
|
conv_model_to_script = ConvBnModel().eval()
|
|
# copy the weight from eager mode so that we can
|
|
# compare the result of the two quantized models later
|
|
conv_model_to_script.conv.weight = torch.nn.Parameter(conv_model.conv.weight.detach())
|
|
fuse_modules(conv_model, ['conv', 'bn'], inplace=True)
|
|
model_eager = quantize(conv_model, default_eval_fn,
|
|
self.img_data)
|
|
qconfig_dict = {
|
|
'': default_qconfig
|
|
}
|
|
model_script = quantize_script(
|
|
torch.jit.script(conv_model_to_script),
|
|
qconfig_dict,
|
|
default_eval_fn,
|
|
[self.img_data],
|
|
inplace=False)
|
|
result_eager = model_eager(self.img_data[0][0])
|
|
result_script = model_script(self.img_data[0][0])
|
|
self.assertEqual(result_eager, result_script)
|
|
|
|
def test_nested(self):
|
|
# Eager mode
|
|
eager_model = AnnotatedNestedModel().eval()
|
|
|
|
# Graph mode
|
|
script_model = NestedModel().eval()
|
|
# Copy weights for eager_model
|
|
script_model.sub1.fc.weight = torch.nn.Parameter(eager_model.sub1.fc.weight.detach())
|
|
script_model.sub1.fc.bias = torch.nn.Parameter(eager_model.sub1.fc.bias.detach())
|
|
script_model.sub2.fc1.weight = torch.nn.Parameter(eager_model.sub2.fc1.module.weight.detach())
|
|
script_model.sub2.fc1.bias = torch.nn.Parameter(eager_model.sub2.fc1.module.bias.detach())
|
|
script_model.sub2.fc2.weight = torch.nn.Parameter(eager_model.sub2.fc2.weight.detach())
|
|
script_model.sub2.fc2.bias = torch.nn.Parameter(eager_model.sub2.fc2.bias.detach())
|
|
script_model.fc3.weight = torch.nn.Parameter(eager_model.fc3.module.weight.detach())
|
|
script_model.fc3.bias = torch.nn.Parameter(eager_model.fc3.module.bias.detach())
|
|
|
|
model_eager = quantize(eager_model, test_only_eval_fn, self.calib_data)
|
|
qconfig_dict = {
|
|
'sub2.fc1': default_per_channel_qconfig,
|
|
'fc3': default_qconfig
|
|
}
|
|
model_traced = torch.jit.trace(script_model, self.calib_data[0][0])
|
|
model_script = torch.jit.script(script_model)
|
|
result_eager = model_eager(self.calib_data[0][0])
|
|
for model_under_test in [model_traced, model_script]:
|
|
model_quantized = quantize_script(
|
|
model_under_test,
|
|
qconfig_dict,
|
|
test_only_eval_fn,
|
|
[self.calib_data],
|
|
inplace=False)
|
|
self.assertEqual(model_quantized(self.calib_data[0][0]), result_eager)
|
|
|
|
|
|
class FunctionalModuleTest(QuantizationTestCase):
|
|
# Histogram Observers are slow, so have no-deadline to ensure test doesn't time out
|
|
@given(train_mode=st.booleans())
|
|
def test_functional_module(self, train_mode):
|
|
model = ModelWithFunctionals()
|
|
x = torch.rand(10, 1, dtype=torch.float)
|
|
xq = torch.quantize_per_tensor(x, 0.01, 30, torch.quint8)
|
|
self.checkScriptable(model, [(x, x)], check_save_load=True)
|
|
if train_mode:
|
|
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
|
|
model = prepare_qat(model)
|
|
else:
|
|
model.qconfig = torch.quantization.get_default_qconfig('qnnpack')
|
|
model = prepare(model)
|
|
# Check if observers and quant/dequant nodes are inserted
|
|
self.checkNoPrepModules(model)
|
|
self.checkObservers(model)
|
|
# Calibrate
|
|
model(xq.dequantize())
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkNoPrepModules(model)
|
|
self.assertEqual(type(model.myadd), torch.nn.quantized.QFunctional)
|
|
self.assertEqual(type(model.mycat), torch.nn.quantized.QFunctional)
|
|
self.assertEqual(type(model.myadd_relu), torch.nn.quantized.QFunctional)
|
|
|
|
checkQuantized(model)
|
|
self.checkScriptable(model, [(xq, xq)], check_save_load=True)
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class FusionTest(QuantizationTestCase):
|
|
def test_fuse_module_train(self):
|
|
model = ModelForFusion(default_qat_qconfig).train()
|
|
# Test step by step fusion
|
|
model = fuse_modules(model, ['conv1', 'bn1', 'relu1'])
|
|
model = fuse_modules(model, ['sub1.conv', 'sub1.bn'])
|
|
self.assertEqual(type(model.conv1), nni.ConvBnReLU2d,
|
|
"Fused Conv + BN + Relu first layer")
|
|
self.assertEqual(type(model.bn1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu (skipped BN)")
|
|
self.assertEqual(type(model.relu1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu (skipped Relu)")
|
|
|
|
self.assertEqual(type(model.sub1.conv), nni.ConvBn2d,
|
|
"Fused submodule Conv + BN")
|
|
self.assertEqual(type(model.sub1.bn), torch.nn.Identity,
|
|
"Fused submodule Conv + BN (skipped BN)")
|
|
self.assertEqual(type(model.sub2.conv), torch.nn.Conv2d,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
|
|
"Non-fused submodule ReLU")
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
|
|
def checkQAT(model):
|
|
self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
|
|
self.assertEqual(type(model.bn1), nn.Identity)
|
|
self.assertEqual(type(model.relu1), nn.Identity)
|
|
self.assertEqual(type(model.sub1.conv), nniqat.ConvBn2d)
|
|
self.assertEqual(type(model.sub1.bn), nn.Identity)
|
|
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
|
|
self.assertEqual(type(model.sub2.relu), nn.ReLU)
|
|
|
|
checkQAT(model)
|
|
test_only_train_fn(model, self.img_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
|
|
self.assertEqual(type(model.bn1), nn.Identity)
|
|
self.assertEqual(type(model.relu1), nn.Identity)
|
|
self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
|
|
self.assertEqual(type(model.sub1.bn), nn.Identity)
|
|
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
|
|
self.assertEqual(type(model.sub2.relu), nn.ReLU)
|
|
test_only_eval_fn(model, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
model = ModelForFusion(default_qat_qconfig).train()
|
|
model = fuse_modules(model, [['conv1', 'bn1', 'relu1'],
|
|
['sub1.conv', 'sub1.bn']])
|
|
model = quantize_qat(model, test_only_train_fn, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
def test_fuse_module_eval(self):
|
|
model = ModelForFusion(default_qconfig)
|
|
model.eval()
|
|
model = fuse_modules(model, [['conv1', 'bn1', 'relu1'] ,
|
|
['conv2', 'relu2'],
|
|
['bn2', 'relu3'],
|
|
['sub1.conv', 'sub1.bn']])
|
|
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
|
|
"Fused Conv + BN + Relu first layer (BN is folded)")
|
|
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
|
|
"Fused Conv + BN + Relu (Conv + folded BN only)")
|
|
self.assertEqual(type(model.conv1[1]), nn.ReLU,
|
|
"Fused Conv + BN + Relu second layer (Relu only)")
|
|
self.assertEqual(type(model.bn1), nn.Identity,
|
|
"Fused Conv + BN + Relu second layer (Skipped BN)")
|
|
self.assertEqual(type(model.relu1), nn.Identity,
|
|
"Fused Conv + BN + Relu second layer (Skipped Relu)")
|
|
self.assertEqual(type(model.conv2), nni.ConvReLU3d,
|
|
"Fused Conv + BN + Relu first layer (BN is folded)")
|
|
self.assertEqual(type(model.bn2), nni.BNReLU3d,
|
|
"Fused BN + Relu first layer (Relu is folded))")
|
|
self.assertEqual(type(model.relu3), nn.Identity,
|
|
"Fused BN + Relu second layer (Skipped Relu)")
|
|
self.assertEqual(type(model.conv2[0]), nn.Conv3d,
|
|
"Fused Conv + BN + Relu (Conv + folded BN only)")
|
|
self.assertEqual(type(model.conv2[1]), nn.ReLU,
|
|
"Fused Conv + BN + Relu second layer (Relu only)")
|
|
self.assertEqual(type(model.relu2), nn.Identity,
|
|
"Fused Conv + BN + Relu second layer (Skipped Relu)")
|
|
|
|
self.assertEqual(type(model.sub1.conv), nn.Conv2d,
|
|
"Fused submodule Conv + folded BN")
|
|
self.assertEqual(type(model.sub1.bn), nn.Identity,
|
|
"Fused submodule (skipped BN)")
|
|
self.assertEqual(type(model.sub2.conv), nn.Conv2d,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
|
|
"Non-fused submodule ReLU")
|
|
|
|
model = prepare(model)
|
|
self.checkObservers(model)
|
|
test_only_eval_fn(model, self.img_data)
|
|
model = convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
|
|
self.assertEqual(type(model.bn1), nn.Identity)
|
|
self.assertEqual(type(model.relu1), nn.Identity)
|
|
self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
|
|
self.assertEqual(type(model.sub1.bn), nn.Identity)
|
|
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
|
|
self.assertEqual(type(model.sub2.relu), nn.ReLU)
|
|
self.assertEqual(type(model.bn2), nniq.BNReLU3d)
|
|
test_only_eval_fn(model, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
model = ModelForFusion(default_qconfig).eval()
|
|
model = fuse_modules(model, [['conv1', 'bn1', 'relu1'],
|
|
['conv2', 'relu2'],
|
|
['bn2', 'relu3'],
|
|
['sub1.conv', 'sub1.bn']])
|
|
model = quantize(model, test_only_eval_fn, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
def test_fusion_sequential_model_train(self):
|
|
model = ModelWithSequentialFusion().train()
|
|
model.to(torch.float)
|
|
fuse_modules(model, [['conv1', 'relu1'] ,
|
|
['features.0.0', 'features.0.1', 'features.0.2'],
|
|
['features.1.0', 'features.1.1', 'features.1.2'],
|
|
['features.2.0', 'features.2.1', 'features.2.2'],
|
|
['classifier.0', 'classifier.1']], inplace=True)
|
|
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
|
|
"Fused Conv + Relu: nni.ConvReLU2d")
|
|
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
|
|
"Fused Conv + Relu: Conv2d")
|
|
self.assertEqual(type(model.conv1[1]), nn.ReLU,
|
|
"Fused Conv + Relu: Relu")
|
|
self.assertEqual(type(model.relu1), nn.Identity,
|
|
"Fused Conv + Relu: Identity")
|
|
for i in range(3):
|
|
self.assertEqual(type(model.features[i][0]), nni.ConvBnReLU2d,
|
|
"Fused submodule Conv + folded BN")
|
|
self.assertEqual(type(model.features[i][1]), nn.Identity,
|
|
"Fused submodule (skipped BN)")
|
|
self.assertEqual(type(model.features[i][2]), nn.Identity,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(model.classifier[0]), nni.LinearReLU)
|
|
self.assertEqual(type(model.classifier[1]), nn.Identity)
|
|
model.qconfig = default_qat_qconfig
|
|
prepare_qat(model, inplace=True)
|
|
self.checkObservers(model)
|
|
model(self.img_data[0][0])
|
|
|
|
|
|
def checkQAT(model):
|
|
self.assertEqual(type(model.conv1), nniqat.ConvReLU2d)
|
|
self.assertEqual(type(model.relu1), nn.Identity)
|
|
for i in range(3):
|
|
self.assertEqual(type(model.features[i][0]), nniqat.ConvBnReLU2d,
|
|
"Fused submodule Conv + folded BN")
|
|
self.assertEqual(type(model.features[i][1]), nn.Identity,
|
|
"Fused submodule (skipped BN)")
|
|
self.assertEqual(type(model.features[i][2]), nn.Identity,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(model.classifier[0]), nniqat.LinearReLU)
|
|
self.assertEqual(type(model.classifier[1]), nn.Identity)
|
|
|
|
checkQAT(model)
|
|
model(self.img_data[1][0])
|
|
convert(model, inplace=True)
|
|
model(self.img_data[1][0])
|
|
self.checkModelWithSequentialQuantized(model)
|
|
|
|
def test_fusion_sequential_model_eval(self):
|
|
model = ModelWithSequentialFusion().eval()
|
|
model.to(torch.float)
|
|
fuse_modules(model, [['conv1', 'relu1'] ,
|
|
['features.0.0', 'features.0.1', 'features.0.2'],
|
|
['features.1.0', 'features.1.1', 'features.1.2'],
|
|
['features.2.0', 'features.2.1', 'features.2.2'],
|
|
['classifier.0', 'classifier.1']], inplace=True)
|
|
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
|
|
"Fused Conv + Relu: nni.ConvReLU2d")
|
|
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
|
|
"Fused Conv + Relu: Conv2d")
|
|
self.assertEqual(type(model.conv1[1]), nn.ReLU,
|
|
"Fused Conv + Relu: Relu")
|
|
self.assertEqual(type(model.relu1), nn.Identity,
|
|
"Fused Conv + Relu: Identity")
|
|
for i in range(3):
|
|
self.assertEqual(type(model.features[i][0]), nni.ConvReLU2d,
|
|
"Fused submodule Conv + folded BN")
|
|
self.assertEqual(type(model.features[i][1]), nn.Identity,
|
|
"Fused submodule (skipped BN)")
|
|
self.assertEqual(type(model.features[i][2]), nn.Identity,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(model.classifier[0]), nni.LinearReLU)
|
|
self.assertEqual(type(model.classifier[1]), nn.Identity)
|
|
model.qconfig = default_qconfig
|
|
prepare(model, inplace=True)
|
|
self.checkObservers(model)
|
|
model(self.img_data[0][0])
|
|
convert(model, inplace=True)
|
|
model(self.img_data[1][0])
|
|
self.checkModelWithSequentialQuantized(model)
|
|
|
|
def checkModelWithSequentialQuantized(self, model):
|
|
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
|
|
self.assertEqual(type(model.relu1), nn.Identity)
|
|
for i in range(3):
|
|
self.assertEqual(type(model.features[i][0]), nniq.ConvReLU2d)
|
|
self.assertEqual(type(model.features[i][1]), nn.Identity)
|
|
self.assertEqual(type(model.features[i][2]), nn.Identity)
|
|
self.assertEqual(type(model.classifier[0]), nniq.LinearReLU)
|
|
self.assertEqual(type(model.classifier[1]), nn.Identity)
|
|
|
|
|
|
class ObserverTest(QuantizationTestCase):
|
|
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
|
|
qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
|
|
reduce_range=st.booleans())
|
|
def test_per_tensor_observers(self, qdtype, qscheme, reduce_range):
|
|
# reduce_range cannot be true for symmetric quantization with uint8
|
|
if qdtype == torch.quint8 and qscheme == torch.per_tensor_symmetric:
|
|
reduce_range = False
|
|
ObserverList = [MinMaxObserver(dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range),
|
|
MovingAverageMinMaxObserver(averaging_constant=0.5,
|
|
dtype=qdtype,
|
|
qscheme=qscheme,
|
|
reduce_range=reduce_range)]
|
|
for myobs in ObserverList:
|
|
# Calculate Qparams should return with a warning for observers with no data
|
|
qparams = myobs.calculate_qparams()
|
|
if type(myobs) == MinMaxObserver:
|
|
x = torch.tensor([1.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0])
|
|
y = torch.tensor([4.0, 5.0, 5.0, 6.0, 7.0, 8.0])
|
|
else:
|
|
# Moving average of min/max for x and y matches that of
|
|
# extreme values for x/y used for minmax observer
|
|
x = torch.tensor([0.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0])
|
|
y = torch.tensor([2.0, 5.0, 5.0, 6.0, 7.0, 10.0])
|
|
|
|
result = myobs(x)
|
|
result = myobs(y)
|
|
self.assertEqual(result, y)
|
|
self.assertEqual(myobs.min_val, 1.0)
|
|
self.assertEqual(myobs.max_val, 8.0)
|
|
qparams = myobs.calculate_qparams()
|
|
if reduce_range:
|
|
if qscheme == torch.per_tensor_symmetric:
|
|
ref_scale = 0.062745 * 255 / 127
|
|
ref_zero_point = 0 if qdtype is torch.qint8 else 128
|
|
else:
|
|
ref_scale = 0.0313725 * 255 / 127
|
|
ref_zero_point = -64 if qdtype is torch.qint8 else 0
|
|
else:
|
|
if qscheme == torch.per_tensor_symmetric:
|
|
ref_scale = 0.062745
|
|
ref_zero_point = 0 if qdtype is torch.qint8 else 128
|
|
else:
|
|
ref_scale = 0.0313725
|
|
ref_zero_point = -128 if qdtype is torch.qint8 else 0
|
|
self.assertEqual(qparams[1].item(), ref_zero_point)
|
|
self.assertAlmostEqual(qparams[0].item(), ref_scale, delta=1e-5)
|
|
state_dict = myobs.state_dict()
|
|
b = io.BytesIO()
|
|
torch.save(state_dict, b)
|
|
b.seek(0)
|
|
loaded_dict = torch.load(b)
|
|
for key in state_dict:
|
|
self.assertEqual(state_dict[key], loaded_dict[key])
|
|
loaded_obs = MinMaxObserver(dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
|
|
loaded_obs.load_state_dict(loaded_dict)
|
|
loaded_qparams = loaded_obs.calculate_qparams()
|
|
self.assertEqual(myobs.min_val, loaded_obs.min_val)
|
|
self.assertEqual(myobs.max_val, loaded_obs.max_val)
|
|
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
|
|
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=2, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
reduce_range=st.booleans())
|
|
def test_per_tensor_dynamic_quant_observers(self, X, reduce_range):
|
|
|
|
X, (scale, zero_point, torch_type) = X
|
|
x = torch.from_numpy(X)
|
|
|
|
obs = MinMaxDynamicQuantObserver(dtype=torch.quint8, reduce_range=reduce_range)
|
|
|
|
result = obs(x)
|
|
qparams = obs.calculate_qparams()
|
|
ref = torch._choose_qparams_per_tensor(x, reduce_range)
|
|
|
|
self.assertEqual(ref[0], qparams[0])
|
|
self.assertEqual(ref[1], qparams[1])
|
|
|
|
|
|
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
|
|
qscheme=st.sampled_from((torch.per_channel_affine, torch.per_channel_symmetric)),
|
|
ch_axis=st.sampled_from((0, 1, 2, 3)), reduce_range=st.booleans())
|
|
def test_per_channel_observers(self, qdtype, qscheme, ch_axis, reduce_range):
|
|
# reduce_range cannot be true for symmetric quantization with uint8
|
|
if qdtype == torch.quint8 and qscheme == torch.per_channel_symmetric:
|
|
reduce_range = False
|
|
ObserverList = [PerChannelMinMaxObserver(reduce_range=reduce_range,
|
|
ch_axis=ch_axis,
|
|
dtype=qdtype,
|
|
qscheme=qscheme),
|
|
MovingAveragePerChannelMinMaxObserver(averaging_constant=0.5,
|
|
reduce_range=reduce_range,
|
|
ch_axis=ch_axis,
|
|
dtype=qdtype,
|
|
qscheme=qscheme)]
|
|
|
|
for myobs in ObserverList:
|
|
# Calculate qparams should work for empty observers
|
|
qparams = myobs.calculate_qparams()
|
|
x = torch.tensor(
|
|
[
|
|
[[[1.0, 2.0], [2.0, 2.5]], [[3.0, 4.0], [4.5, 6.0]]],
|
|
[[[-4.0, -3.0], [5.0, 5.0]], [[6.0, 3.0], [7.0, 8.0]]],
|
|
]
|
|
)
|
|
if type(myobs) == MovingAveragePerChannelMinMaxObserver:
|
|
# Scaling the input tensor to model change in min/max values
|
|
# across batches
|
|
result = myobs(0.5 * x)
|
|
result = myobs(1.5 * x)
|
|
self.assertEqual(result, 1.5 * x)
|
|
else:
|
|
result = myobs(x)
|
|
self.assertEqual(result, x)
|
|
|
|
qparams = myobs.calculate_qparams()
|
|
ref_min_vals = [[1.0, -4.0], [-4.0, 3.0], [-4.0, 2.0], [-4.0, -3.0]]
|
|
ref_max_vals = [[6.0, 8.0], [5.0, 8.0], [6.0, 8.0], [7.0, 8.0]]
|
|
per_channel_symmetric_ref_scales = [
|
|
[0.04705882, 0.06274509],
|
|
[0.03921569, 0.0627451],
|
|
[0.04705882, 0.0627451],
|
|
[0.05490196, 0.0627451],
|
|
]
|
|
per_channel_affine_ref_scales = [
|
|
[0.02352941, 0.04705882],
|
|
[0.03529412, 0.03137255],
|
|
[0.03921569, 0.03137255],
|
|
[0.04313726, 0.04313726],
|
|
]
|
|
per_channel_affine_qint8_zp = [
|
|
[-128, -43],
|
|
[-15, -128],
|
|
[-26, -128],
|
|
[-35, -58],
|
|
]
|
|
per_channel_affine_quint8_zp = [[0, 85], [113, 0], [102, 0], [93, 70]]
|
|
|
|
self.assertEqual(myobs.min_vals, ref_min_vals[ch_axis])
|
|
self.assertEqual(myobs.max_vals, ref_max_vals[ch_axis])
|
|
if qscheme == torch.per_channel_symmetric:
|
|
ref_scales = per_channel_symmetric_ref_scales[ch_axis]
|
|
ref_zero_points = [0, 0] if qdtype is torch.qint8 else [128, 128]
|
|
else:
|
|
ref_scales = per_channel_affine_ref_scales[ch_axis]
|
|
ref_zero_points = (
|
|
per_channel_affine_qint8_zp[ch_axis]
|
|
if qdtype is torch.qint8
|
|
else per_channel_affine_quint8_zp[ch_axis]
|
|
)
|
|
|
|
if reduce_range:
|
|
ref_scales = [s * 255 / 127 for s in ref_scales]
|
|
ref_zero_points = [math.floor(z / 2) for z in ref_zero_points]
|
|
|
|
self.assertTrue(torch.allclose(qparams[0], torch.tensor(ref_scales, dtype=qparams[0].dtype)))
|
|
self.assertTrue(torch.allclose(qparams[1], torch.tensor(ref_zero_points, dtype=qparams[1].dtype)))
|
|
|
|
# Test for serializability
|
|
state_dict = myobs.state_dict()
|
|
b = io.BytesIO()
|
|
torch.save(state_dict, b)
|
|
b.seek(0)
|
|
loaded_dict = torch.load(b)
|
|
for key in state_dict:
|
|
self.assertEqual(state_dict[key], loaded_dict[key])
|
|
loaded_obs = PerChannelMinMaxObserver(reduce_range=reduce_range, ch_axis=ch_axis, dtype=qdtype, qscheme=qscheme)
|
|
loaded_obs.load_state_dict(loaded_dict)
|
|
loaded_qparams = loaded_obs.calculate_qparams()
|
|
self.assertEqual(myobs.min_vals, loaded_obs.min_vals)
|
|
self.assertEqual(myobs.max_vals, loaded_obs.max_vals)
|
|
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
|
|
|
|
def test_observer_scriptable(self):
|
|
obs_list = [MinMaxObserver(), MovingAverageMinMaxObserver(), MinMaxDynamicQuantObserver()]
|
|
for obs in obs_list:
|
|
scripted = torch.jit.script(obs)
|
|
|
|
x = torch.rand(3, 4)
|
|
obs(x)
|
|
scripted(x)
|
|
|
|
self.assertEqual(obs.calculate_qparams(), scripted.calculate_qparams())
|
|
|
|
buf = io.BytesIO()
|
|
torch.jit.save(scripted, buf)
|
|
buf.seek(0)
|
|
loaded = torch.jit.load(buf)
|
|
self.assertEqual(obs.calculate_qparams(), loaded.calculate_qparams())
|
|
|
|
def test_no_qconfig_propagation(self):
|
|
model = ModelWithNoQconfigPropagation()
|
|
model.qconfig = torch.quantization.default_qconfig
|
|
|
|
model = prepare(model)
|
|
self.assertTrue(hasattr(model.fc1, 'qconfig'),
|
|
"QConfig is expected to propagate")
|
|
self.assertFalse(hasattr(model.no_quant_module, 'qconfig'),
|
|
"QConfig is expected to NOT propagate")
|
|
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class RecordHistogramObserverTest(QuantizationTestCase):
|
|
def test_record_observer(self):
|
|
model = AnnotatedSingleLayerLinearModel()
|
|
model.qconfig = default_debug_qconfig
|
|
model = prepare(model)
|
|
# run the evaluation and dump all tensors
|
|
test_only_eval_fn(model, self.calib_data)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
observer_dict = {}
|
|
get_observer_dict(model, observer_dict)
|
|
|
|
self.assertTrue('fc1.module.activation_post_process' in observer_dict.keys(),
|
|
'observer is not recorded in the dict')
|
|
self.assertEqual(len(observer_dict['fc1.module.activation_post_process'].get_tensor_value()), 2 * len(self.calib_data))
|
|
self.assertEqual(observer_dict['fc1.module.activation_post_process'].get_tensor_value()[0], model(self.calib_data[0][0]))
|
|
|
|
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
|
|
qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)))
|
|
def test_observer_scriptable(self, qdtype, qscheme):
|
|
obs = RecordingObserver(dtype=qdtype, qscheme=qscheme)
|
|
scripted = torch.jit.script(obs)
|
|
|
|
x = torch.rand(3, 4)
|
|
obs(x)
|
|
scripted(x)
|
|
self.assertTrue(torch.equal(obs.get_tensor_value()[0], scripted.get_tensor_value()[0]))
|
|
buf = io.BytesIO()
|
|
torch.jit.save(scripted, buf)
|
|
buf.seek(0)
|
|
loaded = torch.jit.load(buf)
|
|
self.assertTrue(torch.equal(obs.get_tensor_value()[0], loaded.get_tensor_value()[0]))
|
|
|
|
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
|
|
qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
|
|
reduce_range=st.booleans())
|
|
def test_histogram_observer(self, qdtype, qscheme, reduce_range):
|
|
myobs = HistogramObserver(bins=3, dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
|
|
# Calculate qparams should work for empty observers
|
|
qparams = myobs.calculate_qparams()
|
|
x = torch.tensor([2.0, 3.0, 4.0, 5.0], requires_grad=True)
|
|
y = torch.tensor([5.0, 6.0, 7.0, 8.0])
|
|
out_x = myobs(x)
|
|
self.assertTrue(out_x.requires_grad)
|
|
myobs(y)
|
|
self.assertEqual(myobs.min_val, 2.0)
|
|
self.assertEqual(myobs.max_val, 8.0)
|
|
self.assertEqual(myobs.histogram, [2., 3., 3.])
|
|
|
|
qparams = myobs.calculate_qparams()
|
|
|
|
if reduce_range:
|
|
if qscheme == torch.per_tensor_symmetric:
|
|
ref_scale = 0.0470588 * 255 / 127
|
|
ref_zero_point = 0 if qdtype is torch.qint8 else 128
|
|
else:
|
|
ref_scale = 0.0235294 * 255 / 127
|
|
ref_zero_point = -64 if qdtype is torch.qint8 else 0
|
|
else:
|
|
if qscheme == torch.per_tensor_symmetric:
|
|
ref_scale = 0.0470588
|
|
ref_zero_point = 0 if qdtype is torch.qint8 else 128
|
|
else:
|
|
ref_scale = 0.0235294
|
|
ref_zero_point = -128 if qdtype is torch.qint8 else 0
|
|
|
|
self.assertEqual(qparams[1].item(), ref_zero_point)
|
|
self.assertAlmostEqual(qparams[0].item(), ref_scale, delta=1e-5)
|
|
# Test for serializability
|
|
state_dict = myobs.state_dict()
|
|
b = io.BytesIO()
|
|
torch.save(state_dict, b)
|
|
b.seek(0)
|
|
loaded_dict = torch.load(b)
|
|
for key in state_dict:
|
|
self.assertEqual(state_dict[key], loaded_dict[key])
|
|
loaded_obs = HistogramObserver(bins=3, dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
|
|
loaded_obs.load_state_dict(loaded_dict)
|
|
loaded_qparams = loaded_obs.calculate_qparams()
|
|
self.assertEqual(myobs.min_val, loaded_obs.min_val)
|
|
self.assertEqual(myobs.max_val, loaded_obs.max_val)
|
|
self.assertEqual(myobs.histogram, loaded_obs.histogram)
|
|
self.assertEqual(myobs.bins, loaded_obs.bins)
|
|
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|