mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/73863 This PR fully aligns the convert function with the design: https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md and simplifies the implementation of convert function by always produce a reference quantized model (with reference patterns) first, and then lower the model to a quantized model that is runnable with PyTorch native backend (fbgemm/qnnpack). This PR makes the convert.py much easier to understand than the previous implementation, and we are able to remove majority of code in quantization_patterns.py as well (in followup PRs). Test Plan: ``` python test/test_quantization.py TestQuantizeFx python test/test_quantization.py TestQuantizeFxOps python test/test_quantization.py TestFXNumericSuiteCoreAPIs python test/test_quantization.py TestFXNumericSuiteCoreAPIsModels ``` and other internal/oss regression tests Imported from OSS Reviewed By: andrewor14 Differential Revision: D34778506 fbshipit-source-id: 0678b66addf736039a8749b352f6f569caca962b (cherry picked from commit 33ec9caf23f3ab373d827117efbd9db0668b2437)
108 lines
5.2 KiB
Python
108 lines
5.2 KiB
Python
import torch
|
|
import copy
|
|
from torch.fx import GraphModule
|
|
from torch.fx.graph import Graph
|
|
from typing import Union, Dict, Any, Set
|
|
|
|
class FusedGraphModule(GraphModule):
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = preserved_attr_names
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
|
|
# GraphModule does not copy attributes which are not in the __dict__
|
|
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
|
# to copy the quantization specific attributes correctly.
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return FusedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
class ObservedGraphModule(GraphModule):
|
|
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = set([
|
|
'_activation_post_process_map',
|
|
'_activation_post_process_indexes',
|
|
'_patterns',
|
|
'_qconfig_map',
|
|
'_prepare_custom_config_dict',
|
|
'_equalization_qconfig_map',
|
|
'_node_name_to_scope',
|
|
'_qconfig_dict',
|
|
'_is_qat',
|
|
'_observed_node_names']).union(preserved_attr_names)
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
|
|
# GraphModule does not copy attributes which are not in the __dict__
|
|
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
|
# to copy the quantization specific attributes correctly.
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
def is_observed_module(module: Any) -> bool:
|
|
return isinstance(module, ObservedGraphModule)
|
|
|
|
class ObservedStandaloneGraphModule(ObservedGraphModule):
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
preserved_attr_names = preserved_attr_names.union(set([
|
|
"_standalone_module_input_quantized_idxs",
|
|
"_standalone_module_output_quantized_idxs"]))
|
|
super().__init__(root, graph, preserved_attr_names)
|
|
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedStandaloneGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
def is_observed_standalone_module(module: Any) -> bool:
|
|
return isinstance(module, ObservedStandaloneGraphModule)
|
|
|
|
def _save_packed_weight(self, destination, prefix, keep_vars):
|
|
for attr_name in dir(self):
|
|
if "_packed_weight" in attr_name and \
|
|
isinstance(getattr(self, attr_name), torch._C.ScriptObject): # type: ignore[attr-defined]
|
|
packed_weight = getattr(self, attr_name)
|
|
destination[prefix + attr_name] = packed_weight
|
|
|
|
class QuantizedGraphModule(GraphModule):
|
|
""" This class is created to make sure PackedParams
|
|
(e.g. LinearPackedParams, Conv2dPackedParams) to appear in state_dict
|
|
so that we can serialize and deserialize quantized graph module with
|
|
torch.save(m.state_dict()) and m.load_state_dict(state_dict)
|
|
"""
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = preserved_attr_names
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
self._register_state_dict_hook(_save_packed_weight)
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
attrs_to_pop = []
|
|
for attr_name in state_dict:
|
|
if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject): # type: ignore[attr-defined] # noqa: B950
|
|
setattr(self, attr_name, state_dict[attr_name])
|
|
attrs_to_pop.append(attr_name)
|
|
|
|
# pop the packed param attributesn
|
|
for attr_name in attrs_to_pop:
|
|
state_dict.pop(attr_name)
|
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return QuantizedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|