mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: How did we get so many uses of `NULL` again? ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047 Differential Revision: D9566799 Pulled By: goldsborough fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
327 lines
11 KiB
C++
327 lines
11 KiB
C++
#include "python_nccl.h"
|
|
|
|
#include "nccl.h"
|
|
#include "torch/csrc/THP.h"
|
|
#include "torch/csrc/Types.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/cuda/THCP.h"
|
|
#include "torch/csrc/cuda/nccl.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
|
|
#include <nccl.h>
|
|
#include <sstream>
|
|
#include <unordered_map>
|
|
|
|
using namespace at;
|
|
using namespace torch;
|
|
using namespace torch::cuda::nccl;
|
|
using namespace torch::cuda::nccl::detail;
|
|
|
|
static const char* COMM_CAPSULE_NAME = "torch.cuda.nccl.Communicator";
|
|
|
|
PyObject * THCPModule_nccl_version(PyObject *self, PyObject *args) {
|
|
return PyInt_FromLong(version());
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_unique_id(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
ncclUniqueId id;
|
|
CHECK(ncclGetUniqueId(&id));
|
|
return PyBytes_FromStringAndSize((char*)&id, NCCL_UNIQUE_ID_BYTES);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static ncclComm_t unpack_nccl_comm(PyObject* capsule) {
|
|
ncclComm_t comm = (ncclComm_t)PyCapsule_GetPointer(capsule, COMM_CAPSULE_NAME);
|
|
if (!comm) throw python_error();
|
|
return comm;
|
|
}
|
|
|
|
static void destroy_nccl_comm(PyObject* capsule) {
|
|
/*
|
|
* TODO(T30279827) Temporarily disable calling ncclCommDestroy
|
|
* Calling ncclCommDestroy while program exiting is undefined
|
|
* according to Nvidia, and lead to segfault in NCCL 2
|
|
* (whether it is called before or after the CUDA runtime destructor).
|
|
* Temporarily disable it in destructor to avoid segfault.
|
|
* Following up with Nvidia for long term solution.
|
|
*/
|
|
return;
|
|
|
|
HANDLE_TH_ERRORS
|
|
ncclComm_t comm = unpack_nccl_comm(capsule);
|
|
with_no_gil([&]{
|
|
ncclCommDestroy(comm);
|
|
});
|
|
END_HANDLE_TH_ERRORS_RET()
|
|
}
|
|
|
|
static std::vector<THCStream*> unpack_streams(PyObject* obj, size_t size) {
|
|
if (obj == Py_None) {
|
|
return std::vector<THCStream*>(size, nullptr);
|
|
}
|
|
auto streams = THPUtils_PySequence_to_THCStreamList(obj);
|
|
if (streams.size() != size) {
|
|
throw std::runtime_error("number of streams is not equal to number of inputs");
|
|
}
|
|
return streams;
|
|
}
|
|
|
|
static std::vector<at::Tensor> extract_tensors(PyObject* obj);
|
|
|
|
static std::vector<ncclComm_t> unpack_comms(PyObject* obj, size_t size) {
|
|
if (obj == Py_None) {
|
|
return std::vector<ncclComm_t>();
|
|
}
|
|
std::vector<ncclComm_t> comms;
|
|
if (PyCapsule_CheckExact(obj)) {
|
|
comms = { unpack_nccl_comm(obj) };
|
|
} else {
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "comm is not a sequence"));
|
|
if (!seq) throw python_error();
|
|
auto size = PySequence_Fast_GET_SIZE(seq.get());
|
|
comms = std::vector<ncclComm_t>(size);
|
|
for (int64_t i = 0; i < size; i++) {
|
|
comms[i] = unpack_nccl_comm(PySequence_Fast_GET_ITEM(seq.get(), i));
|
|
}
|
|
}
|
|
if (comms.size() != size) {
|
|
throw std::runtime_error("number of communicators is not equal to number of inputs");
|
|
}
|
|
return comms;
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_init_rank(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
int nranks;
|
|
const char* id;
|
|
Py_ssize_t id_len;
|
|
int rank;
|
|
|
|
if (!PyArg_ParseTuple(args, "is#i:nccl_init_rank", &nranks, &id, &id_len, &rank)) {
|
|
return nullptr;
|
|
}
|
|
THPUtils_assert(id_len == NCCL_UNIQUE_ID_BYTES,
|
|
"invalid unqiue_id (expected %d bytes, got %zd)",
|
|
NCCL_UNIQUE_ID_BYTES, id_len);
|
|
|
|
ncclUniqueId commId;
|
|
memcpy(&commId, id, NCCL_UNIQUE_ID_BYTES);
|
|
ncclComm_t comm;
|
|
with_no_gil([&]{
|
|
CHECK(ncclCommInitRank(&comm, nranks, commId, rank));
|
|
});
|
|
return PyCapsule_New(comm, COMM_CAPSULE_NAME, &destroy_nccl_comm);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_reduce(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject *_inputs, *_outputs, *_streams, *_comms;
|
|
int root, op;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOiiOO", &_inputs, &_outputs, &root, &op, &_streams, &_comms)) {
|
|
THPUtils_invalidArguments(args, nullptr, "nccl_reduce", 1,
|
|
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int root,"
|
|
" int op, sequence[torch.cuda.Stream or None]");
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
|
|
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
|
|
std::vector<THCStream*> streams = unpack_streams(_streams, inputs.size());
|
|
auto user_comms = unpack_comms(_comms, inputs.size());
|
|
|
|
THPUtils_assert(root >= 0 && (size_t)root < inputs.size(), "invalid root");
|
|
|
|
with_no_gil([&]{
|
|
_check_inputs(inputs, outputs, 1, 1);
|
|
size_t len = inputs.size();
|
|
|
|
ncclDataType_t data_type = _get_data_type(inputs[0].type());
|
|
|
|
int64_t count = inputs[0].numel();
|
|
std::lock_guard<std::mutex> lock(*(THCCachingAllocator_getCudaFreeMutex()));
|
|
auto comms = user_comms.empty() ? _get_communicators(inputs) : ArrayRef<ncclComm_t>(user_comms);
|
|
at::DeviceGuard device_guard;
|
|
AutoNcclGroup nccl_group_guard;
|
|
for (size_t i = 0; i < len; i++) {
|
|
int device = inputs[i].get_device();
|
|
device_guard.set_index(device);
|
|
auto stream = (streams[i] == nullptr) ? nullptr : THCStream_stream(streams[i]);
|
|
CHECK(ncclReduce(inputs[i].data_ptr(), outputs[i].data_ptr(),
|
|
count, data_type, (ncclRedOp_t) op, root, comms[i], stream));
|
|
}
|
|
});
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_all_reduce(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject *_inputs, *_outputs, *_streams, *_comms;
|
|
int op;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
|
|
THPUtils_invalidArguments(args, nullptr, "nccl_all_reduce", 1,
|
|
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op,"
|
|
" sequence[torch.cuda.Stream] streams,"
|
|
" sequence[torch.cuda.nccl.Communicator] comms)");
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
|
|
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
|
|
auto streams = unpack_streams(_streams, inputs.size());
|
|
auto user_comms = unpack_comms(_comms, inputs.size());
|
|
|
|
with_no_gil([&]{
|
|
_check_inputs(inputs, outputs, 1, 1);
|
|
size_t len = inputs.size();
|
|
|
|
ncclDataType_t data_type = _get_data_type(inputs[0].type());
|
|
|
|
int64_t count = inputs[0].numel();
|
|
std::lock_guard<std::mutex> lock(*(THCCachingAllocator_getCudaFreeMutex()));
|
|
auto comms = user_comms.empty() ? _get_communicators(inputs) : ArrayRef<ncclComm_t>(user_comms);
|
|
at::DeviceGuard device_guard;
|
|
AutoNcclGroup nccl_group_guard;
|
|
for (size_t i = 0; i < len; i++) {
|
|
int device = inputs[i].get_device();
|
|
device_guard.set_index(device);
|
|
auto stream = (streams[i] == nullptr) ? nullptr : THCStream_stream(streams[i]);
|
|
CHECK(ncclAllReduce(inputs[i].data_ptr(), outputs[i].data_ptr(),
|
|
count, data_type, (ncclRedOp_t) op, comms[i], stream));
|
|
}
|
|
});
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_broadcast(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject *_inputs, *_streams, *_comms;
|
|
int root;
|
|
|
|
if (!PyArg_ParseTuple(args, "OiOO", &_inputs, &root, &_streams, &_comms)) {
|
|
THPUtils_invalidArguments(args, nullptr, "nccl_broadcast", 1,
|
|
"(sequence[Tensor] inputs, int root)");
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
|
|
THPUtils_assert(root >= 0 && (size_t)root < inputs.size(), "invalid root");
|
|
auto streams = unpack_streams(_streams, inputs.size());
|
|
auto user_comms = unpack_comms(_comms, inputs.size());
|
|
|
|
with_no_gil([&]{
|
|
torch::cuda::nccl::broadcast(inputs, streams, user_comms);
|
|
});
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_all_gather(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject *_inputs, *_outputs, *_streams, *_comms;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO", &_inputs, &_outputs, &_streams, &_comms)) {
|
|
THPUtils_invalidArguments(args, nullptr, "nccl_all_gather", 1,
|
|
"(sequence[Tensor] inputs, sequence[Tensor] outputs");
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
|
|
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
|
|
auto streams = unpack_streams(_streams, inputs.size());
|
|
auto user_comms = unpack_comms(_comms, inputs.size());
|
|
|
|
with_no_gil([&]{
|
|
size_t len = inputs.size();
|
|
_check_inputs(inputs, outputs, len, 1);
|
|
|
|
ncclDataType_t data_type = _get_data_type(inputs[0].type());
|
|
|
|
int64_t count = inputs[0].numel();
|
|
std::lock_guard<std::mutex> lock(*(THCCachingAllocator_getCudaFreeMutex()));
|
|
auto comms = user_comms.empty() ? _get_communicators(inputs) : ArrayRef<ncclComm_t>(user_comms);
|
|
at::DeviceGuard device_guard;
|
|
AutoNcclGroup nccl_group_guard;
|
|
for (size_t i = 0; i < len; i++) {
|
|
int device = inputs[i].get_device();
|
|
device_guard.set_index(device);
|
|
auto stream = (streams[i] == nullptr) ? nullptr : THCStream_stream(streams[i]);
|
|
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
|
|
CHECK(ncclAllGather(inputs[i].data_ptr(), outputs[i].data_ptr(),
|
|
count, data_type, comms[i], stream));
|
|
#else
|
|
CHECK(ncclAllGather(inputs[i].data_ptr(), count, data_type,
|
|
outputs[i].data_ptr(), comms[i], stream));
|
|
#endif
|
|
}
|
|
});
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_nccl_reduce_scatter(PyObject *self, PyObject *args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject *_inputs, *_outputs, *_streams, *_comms;
|
|
int op;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
|
|
THPUtils_invalidArguments(args, nullptr, "nccl_reduce_scatter", 1,
|
|
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op");
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
|
|
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
|
|
auto streams = unpack_streams(_streams, inputs.size());
|
|
auto user_comms = unpack_comms(_comms, inputs.size());
|
|
|
|
with_no_gil([&]{
|
|
size_t len = inputs.size();
|
|
_check_inputs(inputs, outputs, 1, len);
|
|
|
|
ncclDataType_t data_type = _get_data_type(inputs[0].type());
|
|
|
|
int64_t count = inputs[0].numel() / len;
|
|
std::lock_guard<std::mutex> lock(*(THCCachingAllocator_getCudaFreeMutex()));
|
|
auto comms = user_comms.empty() ? _get_communicators(inputs) : ArrayRef<ncclComm_t>(user_comms);
|
|
at::DeviceGuard device_guard;
|
|
AutoNcclGroup nccl_group_guard;
|
|
for (size_t i = 0; i < len; i++) {
|
|
int device = inputs[i].get_device();
|
|
device_guard.set_index(device);
|
|
auto stream = (streams[i] == nullptr) ? nullptr : THCStream_stream(streams[i]);
|
|
CHECK(ncclReduceScatter(inputs[i].data_ptr(), outputs[i].data_ptr(),
|
|
count, data_type, (ncclRedOp_t) op, comms[i], stream));
|
|
}
|
|
});
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static std::vector<at::Tensor> extract_tensors(PyObject* obj) {
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "expected a sequence"));
|
|
if (!seq) throw python_error();
|
|
|
|
std::vector<at::Tensor> list;
|
|
Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
|
|
for (Py_ssize_t i = 0; i < length; i++) {
|
|
PyObject* item = PySequence_Fast_GET_ITEM(seq.get(), i);
|
|
if (!THPVariable_Check(item)) {
|
|
throw TypeError("expected Tensor at %d (got %s)", (int)i, Py_TYPE(item)->tp_name);
|
|
}
|
|
auto var = (THPVariable*) item;
|
|
list.emplace_back(var->cdata.data());
|
|
}
|
|
return list;
|
|
}
|