pytorch/torch/testing/_internal/common_quantization.py
Jerry Zhang 7db7da7151 [reland][quant][graphmode][fx] Add top level APIs (#43581) (#43901)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43901

Add similar APIs like eager and graph mode on torchscript
- fuse_fx
- quantize_fx (for both post training static and qat)
- quantize_dynamic_fx (for post training dynamic)
- prepare_fx (for both post training static and qat)
- prepare_dynamic_fx (for post training dynamic)
- convert_fx (for all modes)

Test Plan:
Imported from OSS

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D23432430

fbshipit-source-id: fc99eb75cbecd6ee7a3aa6c8ec71cd499ff7e3c1
2020-08-31 18:24:26 -07:00

1309 lines
46 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.distributed as dist
from torch.testing._internal.common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit
from torch.quantization.default_mappings import (
DEFAULT_DYNAMIC_MODULE_MAPPING,
DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST,
DEFAULT_QAT_MODULE_MAPPING,
)
# symbolic trace
from torch.fx import symbolic_trace
# graph mode quantization based on fx
from torch.quantization import (
QuantType,
fuse_fx,
prepare_fx,
prepare_dynamic_fx,
convert_fx,
convert_dynamic_fx,
)
import copy
import io
import functools
import time
import os
import unittest
import numpy as np
from torch.testing import FileCheck
class NodeSpec:
''' Used for checking GraphModule Node
'''
def __init__(self, op, target):
'''
op: call_function | call_module
target:
for call_function, target would be a function
for call_module, target would be the type of PyTorch module
'''
self.op = op
self.target = target
@classmethod
def call_function(cls, target):
return NodeSpec('call_function', target)
@classmethod
def call_method(cls, target):
return NodeSpec('call_method', target)
@classmethod
def call_module(cls, target):
return NodeSpec('call_module', target)
def __hash__(self):
return hash((self.op, self.target))
def __eq__(self, other):
if not isinstance(other, NodeSpec):
return NotImplemented
return self.op == other.op and self.target == other.target
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for inp in calib_data:
output = model(*inp)
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
model.train()
cnt = 0
for image, target in data_loader:
start_time = time.time()
print('.', end='')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if cnt >= ntrain_batches:
return
return
def ddp_setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def ddp_cleanup():
dist.destroy_process_group()
def run_ddp(rank, world_size, prepared):
ddp_setup(rank, world_size)
prepared.cuda()
prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
prepared.to(rank)
model_with_ddp = prepared
optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1)
ddp_cleanup()
def convert_dynamic(module):
convert(module, DEFAULT_DYNAMIC_MODULE_MAPPING, inplace=True)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig_(model, qconfig_dict)
def _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
W_zero_point, use_bias, use_channelwise,
):
in_channels = in_channels_per_group * groups
out_channels = out_channels_per_group * groups
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min, X_value_max,
(batch_size, in_channels,) + input_feature_map_size)
X = X_scale * (X_init - X_zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_scale = W_scale * out_channels
W_zero_point = W_zero_point * out_channels
# Resize W_scale and W_zero_points arrays equal to out_channels
W_scale = W_scale[:out_channels]
W_zero_point = W_zero_point[:out_channels]
# For testing, we use small values for weights and for activations so that
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
# qconv implementation and if there is no overflow.
# In reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
(W_value_min, W_value_max) = (-5, 5)
# The operator expects them in the format
# (out_channels, in_channels/groups,) + kernel_size
W_init = torch.randint(
W_value_min, W_value_max,
(out_channels, in_channels_per_group,) + kernel_size)
b_init = torch.randint(0, 10, (out_channels,))
if use_channelwise:
W_shape = (-1, 1) + (1,) * len(kernel_size)
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(*W_shape) * (
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
b = X_scale * W_scales_tensor * b_init.float()
W_q = torch.quantize_per_channel(
W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
dtype=torch.qint8)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).float()
b = X_scale * W_scale[0] * b_init.float()
W_q = torch.quantize_per_tensor(
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
return (X, X_q, W, W_q, b if use_bias else None)
def skipIfNoFBGEMM(fn):
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
if isinstance(fn, type):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
try:
import torchvision # noqa: F401
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
def get_script_module(model, tracing, data):
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
"""
Convert lengths to offsets for embedding_bag
"""
tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
tt[1:] = t
tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
if use_begin_offset:
return tt[:-1]
return tt[1:]
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
super().setUp()
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
for _ in range(2)]
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_dict = {1 : self.img_data_1d,
2 : self.img_data_2d,
3 : self.img_data_3d}
# Quant types that produce statically quantized ops
self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
# All quant types for (fx based) graph mode quantization
self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkNoQconfig(self, module):
r"""Checks the module does not contain qconfig
"""
self.assertFalse(hasattr(module, 'qconfig'))
for child in module.children():
self.checkNoQconfig(child)
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module, propagate_qconfig_list=None):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
if propagate_qconfig_list is None:
propagate_qconfig_list = DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST
if hasattr(module, 'qconfig') and module.qconfig is not None and \
len(module._modules) == 0 and not isinstance(module, torch.nn.Sequential) \
and type(module) in propagate_qconfig_list:
self.assertTrue(hasattr(module, 'activation_post_process'),
'module: ' + str(type(module)) + ' do not have observer')
# we don't need to check observers for child modules of the
# qat modules
if type(module) not in DEFAULT_QAT_MODULE_MAPPING.values():
for child in module.children():
self.checkObservers(child)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
def checkDynamicQuantizedLinear(self, mod, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod._packed_params.dtype, dtype)
def check_eager_serialization(self, ref_model, loaded_model, x):
# Check state dict serialization and torch.save APIs
model_dict = ref_model.state_dict()
b = io.BytesIO()
torch.save(model_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
loaded_model.load_state_dict(loaded_dict)
ref_out = ref_model(*x)
load_out = loaded_model(*x)
def check_outputs(ref_out, load_out):
self.assertEqual(ref_out[0], load_out[0])
if isinstance(ref_out[1], tuple):
self.assertEqual(ref_out[1][0], load_out[1][0])
self.assertEqual(ref_out[1][1], load_out[1][1])
else:
self.assertEqual(ref_out[1], load_out[1])
check_outputs(ref_out, load_out)
b = io.BytesIO()
torch.save(ref_model, b)
b.seek(0)
loaded = torch.load(b)
load_out = loaded(*x)
check_outputs(ref_out, load_out)
def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
weight = ref_model.get_weight()
bias = ref_model.get_bias()
self.assertEqual(weight_keys ^ weight.keys(), set())
self.assertEqual(bias_keys ^ bias.keys(), set())
def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.LSTM type
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
if hasattr(mod, '_all_weight_values'):
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Use first calib_data entry as trace input
traced = torch.jit.trace(orig_mod, calib_data[0])
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for inp in calib_data:
ref_output = orig_mod(*inp)
scripted_output = test_mod(*inp)
self.assertEqual(scripted_output, ref_output)
def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
check=True, eval_mode=True, dynamic=False, qconfig=None):
if debug:
print('Testing:', str(module))
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
if eval_mode:
module = module.eval()
if dynamic:
qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
model = get_script_module(module, tracing, inputs[0]).eval()
if debug:
print('input graph:', model.graph)
models = {}
outputs = {}
for d in [True, False]:
if dynamic:
models[d] = quantize_dynamic_jit(model, qconfig_dict, debug=d)
# make sure it runs
outputs[d] = models[d](inputs)
else:
# module under test can contain in-place ops, and we depend on
# input data staying constant for comparisons
inputs_copy = copy.deepcopy(inputs)
models[d] = quantize_jit(
model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
debug=d)
# make sure it runs
outputs[d] = models[d](*inputs[0])
if debug:
print('debug graph:', models[True].graph)
print('non debug graph:', models[False].graph)
if check:
# debug and non-debug option should have the same numerics
self.assertEqual(outputs[True], outputs[False])
# non debug graph should produce quantized op
FileCheck().check(quantized_op) \
.run(models[False].graph)
return models[False]
def checkGraphModuleNodes(
self, graph_module,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None):
""" Check if GraphModule contains the target node
Args:
graph_module: the GraphModule instance we want to check
expected_node, expected_node_occurrence, expected_node_list:
see docs for checkGraphModeFxOp
"""
nodes_in_graph = dict()
node_list = []
modules = dict(graph_module.root.named_modules())
for node in graph_module.graph.nodes:
n = None
if node.op == 'call_function' or node.op == 'call_method':
n = NodeSpec(node.op, node.target)
elif node.op == 'call_module':
n = NodeSpec(node.op, type(modules[node.target]))
if n is not None:
node_list.append(n)
if n in nodes_in_graph:
nodes_in_graph[n] += 1
else:
nodes_in_graph[n] = 1
if expected_node is not None:
self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) +
' not found in the graph module')
if expected_node_occurrence is not None:
for expected_node, occurrence in expected_node_occurrence.items():
self.assertTrue(
expected_node in nodes_in_graph,
'Check failed for node:' + str(expected_node) +
' not found')
self.assertTrue(
nodes_in_graph[expected_node] == occurrence,
'Check failed for node:' + str(expected_node) +
' Expected occurrence:' + str(occurrence) +
' Found occurrence:' + str(nodes_in_graph[expected_node]))
if expected_node_list is not None:
cur_index = 0
for n in node_list:
if cur_index == len(expected_node_list):
return
if n == expected_node_list[cur_index]:
cur_index += 1
self.assertTrue(
cur_index == len(expected_node_list),
"Check failed for graph:" +
self.printGraphModule(graph_module, print_str=False) +
"Expected ordered list:" +
str(expected_node_list))
def printGraphModule(self, graph_module, print_str=True):
modules = dict(graph_module.root.named_modules())
node_infos = []
for n in graph_module.graph.nodes:
node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
if n.op == 'call_module':
node_info += ' module type: ' + repr(type(modules[n.target]))
node_infos.append(node_info)
str_to_print = '\n'.join(node_infos)
if print_str:
print(str_to_print)
return str_to_print
def checkGraphModeFxOp(self, model, inputs, quant_type,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None,
debug=False):
""" Quantizes model with graph mode quantization on fx and check if the
quantized model contains the quantized_node
Args:
model: floating point torch.nn.Module
inputs: one positional sample input arguments for model
expected_node: NodeSpec
e.g. NodeSpec.call_function(torch.quantize_per_tensor)
expected_node_occurrence: a dict from NodeSpec to
expected number of occurences (int)
e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1,
NodeSpec.call_method('dequantize'): 1}
expected_node_list: a list of NodeSpec, used to check the order
of the occurrence of Node
e.g. [NodeSpec.call_function(torch.quantize_per_tensor),
NodeSpec.call_module(nnq.Conv2d),
NodeSpec.call_function(F.hardtanh_),
NodeSpec.call_method('dequantize')]
"""
# TODO: make img_data a single example instead of a list
if type(inputs) == list:
inputs = inputs[0]
if quant_type == QuantType.QAT:
model.train()
else:
model.eval()
original = symbolic_trace(model)
fused = fuse_fx(original)
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
if quant_type == QuantType.DYNAMIC:
prepare = prepare_dynamic_fx
convert = convert_dynamic_fx
else:
prepare = prepare_fx
convert = convert_fx
prepared = prepare(fused, qconfig_dict)
prepared(*inputs)
qgraph = convert(prepared)
qgraph_debug = convert(prepared, debug=True)
result = qgraph(*inputs)
result_debug = qgraph_debug(*inputs)
self.assertEqual((result - result_debug).abs().max(), 0), \
'Expecting debug and non-debug option to produce identical result'
if debug:
print()
print('quant type:', quant_type)
print('origianl graph module:', type(model))
self.printGraphModule(original)
print()
print('quantized graph module:', type(qgraph))
self.printGraphModule(qgraph)
print()
self.checkGraphModuleNodes(
qgraph, expected_node, expected_node_occurrence, expected_node_list)
# Below are a series of neural net models to use in testing quantization
# Single layer models
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class AnnotatedSingleLayerLinearModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class RNNDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRU':
self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
if mod_type == 'LSTM':
self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class RNNCellDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRUCell':
self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
if mod_type == 'LSTMCell':
self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
if mod_type == 'RNNReLU':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
if mod_type == 'RNNTanh':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class LSTMwithHiddenDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x, hid):
x, hid = self.lstm(x, hid)
return x, hid
class ConvModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
class AnnotatedConvModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class ConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class AnnotatedConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = default_qconfig
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.dequant(x)
return x
class AnnotatedConvBnReLUModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super(AnnotatedConvBnReLUModel, self).__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=True)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dequant(x)
return x
def fuse_model(self):
torch.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = torch.quantization.get_default_qconfig("fbgemm")
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class ActivationsTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("fbgemm")
self.quant = torch.quantization.QuantStub()
self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
self.elu = torch.nn.ELU().to(dtype=torch.float)
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.hardswish(x)
x = self.elu(x)
x = self.dequant(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
class NormalizationTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = torch.quantization.QuantStub()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.layer_norm = torch.nn.LayerNorm((8))
self.group_norm = torch.nn.GroupNorm(2, 8)
self.instance_norm1d = torch.nn.InstanceNorm1d(8)
self.instance_norm2d = torch.nn.InstanceNorm2d(8)
self.instance_norm3d = torch.nn.InstanceNorm3d(8)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.layer_norm(x)
x = self.group_norm(x.unsqueeze(-1))
x = self.instance_norm1d(x)
x = self.instance_norm2d(x.unsqueeze(-1))
x = self.instance_norm3d(x.unsqueeze(-1))
return x
class NestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
if qengine == 'fbgemm':
self.sub2.fc1.qconfig = default_per_channel_qconfig
else:
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
weight=default_weight_observer)
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu1 = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
return self.relu2(self.fc2(self.relu1(self.fc1(x))))
def fuse_modules(self):
fusable_layers = []
named_children = list(self.named_children())
for idx, (current_name, layer) in enumerate(named_children):
if isinstance(layer, torch.nn.Linear):
if idx >= len(named_children) - 1:
break
if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
fusable_layers.append([current_name,
named_children[idx + 1][0]])
torch.quantization.fuse_modules(self, fusable_layers, inplace=True)
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self):
super().__init__()
self.sub = InnerModule()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.fuse_modules()
class AnnotatedSkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.module.fuse_modules()
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class SubModelForFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SubModelWithoutFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.conv(x))
class ModelForFusion(nn.Module):
def __init__(self, qconfig):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.sub1 = SubModelForFusion()
self.sub2 = SubModelWithoutFusion()
self.fc = nn.Linear(36, 10).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.qconfig = qconfig
self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
# don't quantize sub2
self.sub2.qconfig = None
self.fc.qconfig = None
def forward(self, x):
x = x.squeeze(2)
x = self.quant(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu4(x)
x = x.unsqueeze(2)
y = x.unsqueeze(2)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.dequant(x)
x = self.sub2(x)
x = x.view(-1, 36).contiguous()
x = self.fc(x)
y = self.conv2(y)
y = self.relu2(y)
y = self.bn2(y)
y = self.relu3(y)
y = self.dequant(y)
return x
class ConvBNReLU(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False)
)
class ModelWithSequentialFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = []
for i in range(3):
layers.append(ConvBNReLU())
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
class ModelForFusionWithBias(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.dequant(x)
return x
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModelWithFunctionals(torch.nn.Module):
def __init__(self):
super().__init__()
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.myadd_relu = nnq.FloatFunctional()
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# self.my_scalar_add = nnq.FloatFunctional()
# self.my_scalar_mul = nnq.FloatFunctional()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
w = self.myadd_relu.add_relu(z, z)
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# w = self.my_scalar_add.add_scalar(w, -0.5)
# w = self.my_scalar_mul.mul_scalar(w, 0.5)
return w
class ResNetBase(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.myop = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.myop.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
return out
class ModelMultipleOps(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.skip_add.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
# Model to ensure consistency of fake quant with true quant
# Average pooling and mean operations are not modelled
# accurately with fake-quant so this model does not
# contain those operations
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.maxpool = nn.MaxPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
skip = self.conv2(x)
out = self.skip_add.add(out, skip)
out = self.relu2(out)
out = self.maxpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
class EmbeddingModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
def forward(self, indices, offsets, per_sample_weights):
return self.emb(indices, offsets, per_sample_weights)