pytorch/test/cpp/api/grad_mode.cpp
Ailing Zhang 7caa464631 Implement public API InferenceMode and its error handling (#53343)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53343

Test Plan: Imported from OSS

Reviewed By: ezyang, nikithamalgifb

Differential Revision: D26973911

Pulled By: ailzhang

fbshipit-source-id: 0ebdac7a3cd554822d26d5a40f539b6e2aaec61d
2021-03-27 13:44:23 -07:00

71 lines
2.1 KiB
C++

#include <torch/script.h>
#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
using namespace torch::autograd;
using namespace torch::test;
TEST(GradModeTest, TestRequiresGradFunctionalOp) {
torch::AutoGradMode mode(false);
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor func_out = c * c;
ASSERT_FALSE(func_out.requires_grad());
ASSERT_TRUE(func_out.is_leaf());
}
}
TEST(GradModeTest, TestRequiresGradInplaceOp) {
torch::AutoGradMode mode(false);
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
c.mul_(2);
ASSERT_EQ(c.requires_grad(), requires_grad);
}
}
TEST(GradModeTest, TestRequiresGradViewOp) {
torch::AutoGradMode mode(false);
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor view_out = c.view({2, 3});
ASSERT_EQ(view_out.requires_grad(), requires_grad);
ASSERT_TRUE(view_out.is_leaf());
}
}
TEST(GradModeTest, TestRequiresGradViewOpExiting) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor view_out, tmp;
{
torch::AutoGradMode mode(false);
view_out = a.view({2, 3}); // go through kernels: VariableType, InplaceOrView, CPU
assert_tensor_creation_meta(view_out, torch::autograd::CreationMeta::NO_GRAD_MODE);
ASSERT_EQ(view_out.requires_grad(), requires_grad);
ASSERT_TRUE(view_out.is_leaf());
}
tmp = view_out * view_out;
ASSERT_EQ(tmp.requires_grad(), requires_grad);
if (requires_grad) {
ASSERT_THROWS_WITH(view_out.mul_(2), // go through kernels: VariableType, InplaceOrView, CPU
"A view was created in no_grad mode and is being modified inplace")
} else {
view_out.mul_(2);
}
tmp = view_out.view({2, 3});
ASSERT_EQ(tmp.requires_grad(), requires_grad);
assert_tensor_creation_meta(tmp, torch::autograd::CreationMeta::NO_GRAD_MODE);
}
}