pytorch/torch/csrc/jit/tensorexpr/loopnest.cpp
Hui Guo 7c4ac9e3ee [NNC] Fix loopnest.cache_accesses for reduce ops (fixed #59002) (#59136)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59136

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D28768598

Pulled By: huiguoo

fbshipit-source-id: 99ab8430bc0ba395e2a041b03a7761de335ddda5
2021-06-03 21:04:14 -07:00

2981 lines
91 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <algorithm>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <c10/util/Logging.h>
#include <c10/util/irange.h>
#include <c10/util/string_utils.h>
#include <ATen/core/functional.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_mutator.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_verifier.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace torch {
namespace jit {
namespace tensorexpr {
LoopNest::LoopNest(const LoopNest& other)
: root_stmt_(Stmt::clone(other.root_stmt_)),
output_bufs_(other.output_bufs_) {
verify(root_stmt_);
}
LoopNest::LoopNest(Stmt* stmt, std::unordered_set<const Buf*> output_bufs)
: root_stmt_(stmt), output_bufs_(std::move(output_bufs)) {
verify(root_stmt_);
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
LoopNest::LoopNest(
const std::vector<Tensor*>& output_tensors,
const std::vector<Tensor*>& tensors_to_compute) {
initialize(output_tensors, tensors_to_compute);
verify(root_stmt_);
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
LoopNest::LoopNest(const std::vector<Tensor*>& output_tensors) {
initialize(output_tensors, output_tensors);
verify(root_stmt_);
}
const std::unordered_set<const Buf*> LoopNest::getIntermediateBufs() const {
std::unordered_set<const Buf*> result;
auto input_bufs = getInputBufs();
auto bufs = NodeFinder<Buf>::find(root_stmt_);
for (auto* buf : bufs) {
if (!output_bufs_.count(buf) && !input_bufs.count(buf)) {
result.insert(buf);
}
}
return result;
}
const std::unordered_set<const Buf*> LoopNest::getInputBufs() const {
std::unordered_set<const Buf*> result;
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
for (const auto& kv : buf_load_store_uses) {
bool has_store = false;
for (const auto& use : kv.second) {
if (use.isStore) {
has_store = true;
break;
}
}
if (!has_store) {
result.insert(kv.first);
}
}
return result;
}
class IndexFlattener : public IRMutator {
public:
Stmt* flatten(Stmt* s) {
return s->accept_mutator(this);
}
const Expr* mutate(const Load* v) override {
if (v->indices().size() == 1) {
return v;
}
return new Load(
v->dtype(), v->buf(), {flatten_index(v->buf()->dims(), v->indices())});
}
Stmt* mutate(const Store* v) override {
const Expr* value = v->value();
const Expr* new_value = value->accept_mutator(this);
if (v->indices().size() == 1 && value == new_value) {
return (Stmt*)v;
}
return new Store(
v->buf(), {flatten_index(v->buf()->dims(), v->indices())}, new_value);
}
};
class Vectorizer : public IRMutator {
public:
Stmt* vectorize(const For* v) {
Stmt* body = v->body();
const Var* var = v->var();
const Expr* start = v->start();
const Expr* stop = v->stop();
const IntImm* start_imm = dynamic_cast<const IntImm*>(start);
const IntImm* stop_imm = dynamic_cast<const IntImm*>(stop);
if (!start_imm) {
throw std::runtime_error(
"Can't vectorize due to non-constant loop start!");
}
if (!stop_imm) {
throw std::runtime_error(
"Can't vectorize due to non-constant loop stop!");
}
var_ = var;
start_ = start_imm;
lanes_ = stop_imm->value();
Stmt* new_body = body->accept_mutator(this);
if (new_body == body) {
throw std::runtime_error("Vectorization failed!");
}
return new_body;
}
const Expr* mutate(const Add* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) + ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Sub* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) - ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Mul* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) * ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Div* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) / ExprHandle(inputs[1]);
});
}
const Expr* mutate(const And* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) & ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Or* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) | ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Xor* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) ^ ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Lshift* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) << ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Rshift* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) >> ExprHandle(inputs[1]);
});
}
const Expr* mutate(const Max* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Max::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
const Expr* mutate(const Min* v) override {
std::vector<const Expr*> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Min::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
const Expr* mutate(const CompareSelect* v) override {
std::vector<const Expr*> inputs = {
v->lhs(), v->rhs(), v->ret_val1(), v->ret_val2()};
return try_vectorize(v, inputs, [&]() {
return CompareSelect::make(
ExprHandle(inputs[0]),
ExprHandle(inputs[1]),
ExprHandle(inputs[2]),
ExprHandle(inputs[3]),
v->compare_select_op(),
v->bias());
});
}
const Expr* mutate(const BitCast* v) override {
std::vector<const Expr*> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return BitCast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
const Expr* mutate(const Cast* v) override {
std::vector<const Expr*> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return Cast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
const Expr* mutate(const Var* v) override {
if (v == var_) {
return Ramp::make(ExprHandle(start_), 1, lanes_).node();
}
return v;
}
const Expr* mutate(const Ramp* v) override {
const Expr* base = v->base();
const Expr* stride = v->stride();
const Expr* base_new = base->accept_mutator(this);
const Expr* stride_new = stride->accept_mutator(this);
if (base_new == base && stride_new == stride) {
return v;
}
throw std::runtime_error("Can't vectorize a Ramp!");
}
const Expr* mutate(const Load* v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
const Buf* buf = v->buf();
std::vector<const Expr*> inputs = {v->flat_index()};
return try_vectorize(v, inputs, [&]() {
return Load::make(dtype, BufHandle(buf), {ExprHandle(inputs[0])});
});
}
const Expr* mutate(const ReduceOp* v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
std::vector<const Expr*> inputs = {v->body()};
auto* out = try_vectorize(v, inputs, [&]() {
return ExprHandle(
new ReduceOp(inputs[0], v->reduce_args(), v->reducer()));
});
return out;
}
const Expr* mutate(const Broadcast* v) override {
const Expr* val = v->value();
const Expr* new_val = val->accept_mutator(this);
if (new_val == val) {
return v;
}
throw std::runtime_error("Can't vectorize a Broadcast!");
}
const Expr* mutate(const IfThenElse* v) override {
const Expr* condition = v->condition();
const Expr* new_condition = condition->accept_mutator(this);
if (new_condition != condition) {
throw std::runtime_error("Can't vectorize an IfThenElse condition!");
}
std::vector<const Expr*> inputs = {v->true_value(), v->false_value()};
return try_vectorize(v, inputs, [&]() {
return IfThenElse::make(
ExprHandle(condition), ExprHandle(inputs[0]), ExprHandle(inputs[1]));
});
}
const Expr* mutate(const Intrinsics* v) override {
std::vector<const Expr*> inputs = v->params();
return try_vectorize(v, inputs, [&]() {
return ExprHandle(new Intrinsics(v->op_type(), inputs));
});
}
Stmt* mutate(const Store* v) override {
const Buf* buf = v->buf();
std::vector<const Expr*> inputs = {v->flat_index(), v->value()};
return try_vectorize(v, inputs, [&]() {
return Store::make(
BufHandle(buf), {ExprHandle(inputs[0])}, ExprHandle(inputs[1]));
});
}
Stmt* mutate(const For* v) override {
const Var* var = v->var();
const Expr* start = v->start();
const Expr* stop = v->stop();
LoopOptions loop_options = v->loop_options();
const Expr* new_start = start->accept_mutator(this);
const Expr* new_stop = stop->accept_mutator(this);
if (new_start != start || new_stop != stop) {
throw std::runtime_error(
"Can't vectorize nested For with dependent loop bounds!");
}
Stmt* body = v->body();
Stmt* new_body = body->accept_mutator(this);
if (new_body == body) {
return (For*)v;
}
return new For(var, new_start, new_stop, new_body, loop_options);
}
template <typename T>
const Expr* try_vectorize(
const Expr* e,
std::vector<const Expr*>& inputs,
T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor().node();
}
return e;
}
template <typename T>
Stmt* try_vectorize(
const Stmt* s,
std::vector<const Expr*>& inputs,
T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor();
}
return (Stmt*)s;
}
bool vectorize_inputs(std::vector<const Expr*>& inputs) {
bool any_vectorized = false;
std::vector<const Expr*> new_inputs;
// Attempt to vectorize each input.
for (const Expr*& in : inputs) {
const Expr* new_in = in->accept_mutator(this);
new_inputs.push_back(new_in);
if (new_in != in) {
any_vectorized = true;
}
}
// If none of them vectorized, then don't vectorize this.
if (!any_vectorized) {
return false;
}
// Insert broadcasts for any inputs that weren't vectorized.
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i] == new_inputs[i]) {
inputs[i] = Broadcast::make(ExprHandle(inputs[i]), lanes_).node();
} else {
inputs[i] = new_inputs[i];
}
}
// And then vectorize this node.
return true;
}
const Var* var_ = nullptr;
int lanes_ = 0;
const Expr* start_ = nullptr;
};
void LoopNest::vectorize(For* f) {
Block* b = dynamic_cast<Block*>(f->get_parent());
if (!b) {
return;
}
// Can't vectorize reduction axes.
auto reductions = NodeFinder<ReduceOp>::find(f);
for (auto* r : reductions) {
if (std::find(r->reduce_args().begin(), r->reduce_args().end(), f->var()) !=
r->reduce_args().end()) {
throw std::logic_error("Cannot vectorize reduction axis - rfactor first");
}
}
Vectorizer v;
Stmt* old_f = Stmt::clone(f);
Stmt* new_f = nullptr;
try {
new_f = FlattenIndexes(f);
new_f = v.vectorize(dynamic_cast<For*>(new_f));
} catch (std::runtime_error& e) {
// Partial vectorization may have corrupted f
new_f = old_f;
}
b->replace_stmt(f, IRSimplifier::simplify(new_f));
}
void LoopNest::initialize(
const std::vector<Tensor*>& output_tensors,
const std::vector<Tensor*>& tensors_to_compute) {
for (auto t : output_tensors) {
output_bufs_.insert(t->buf());
}
std::vector<Stmt*> loops;
for (Tensor* t : tensors_to_compute) {
Stmt* loop = t->stmt();
if (loop->get_parent()) {
std::cerr << "Error: creating a loopnest from already used Tensors\n";
loops = {};
break;
}
// Flatten initializers.
if (Block* block = dynamic_cast<Block*>(loop)) {
for (auto* s : block->stmts()) {
block->remove_stmt(s);
loops.push_back(s);
}
} else {
loops.push_back(loop);
}
}
root_stmt_ = new Block(loops);
}
class FunctionInliner : public IRMutator {
public:
FunctionInliner(Store* producer, std::unordered_set<const Buf*> outputs)
: buf_(producer->buf()),
producer_(producer),
outputs_(std::move(outputs)) {
for (auto* i : producer->indices()) {
if (auto index_var = dynamic_cast<const Var*>(i)) {
index_vars_.insert(index_var);
producer_index_vars_.push_back(index_var);
} else if (dynamic_cast<const IntImm*>(i) != nullptr) {
// If the index can be a constant, then that dimension must have size 1
// (since we don't support in-place writes). Resolves issue 52581.
TORCH_INTERNAL_ASSERT(
dynamic_cast<const IntImm*>(i)->value() == 0,
"Constant index impression should always be zero");
producer_index_vars_.push_back(nullptr);
} else {
throw std::logic_error("cannot inline Buf with compound indices");
}
}
}
private:
const Expr* mutate_loads(const Buf* buf, std::vector<const Expr*> dims) {
std::vector<const Var*> index_vars;
TORCH_INTERNAL_ASSERT(buf->ndim() == producer_index_vars_.size());
for (const auto i : c10::irange(buf->ndim())) {
const Var* func_callee_arg = producer_index_vars_.at(i);
const Expr* func_caller_param = dims.at(i);
if (func_callee_arg == nullptr) {
TORCH_INTERNAL_ASSERT(
dynamic_cast<const IntImm*>(func_caller_param) != nullptr &&
dynamic_cast<const IntImm*>(func_caller_param)->value() == 0,
"We are implicitly assuming that if you have an index of 0, that must also be inlined into an index of 0");
continue;
}
if (func_callee_arg == nullptr)
continue;
auto iter = inline_mapping_.find(func_callee_arg);
if (iter != inline_mapping_.end()) {
throw std::runtime_error(
"Duplicated variables: " + func_callee_arg->name_hint());
}
// Add a mapping for each function parameter to it's source name.
inline_mapping_[func_callee_arg] = func_caller_param;
index_vars.push_back(func_callee_arg);
}
// Call the actual replacement.
const Expr* body = producer_->value();
const Expr* result = body->accept_mutator(this);
// Remove the mappings we created for this function parameters.
for (auto* v : index_vars) {
for (auto& pair : random_bindings_) {
if (pair.second.erase(v)) {
const Expr* inlined = inline_mapping_[v];
for (auto* nv : VarFinder::find(inlined)) {
pair.second.insert(nv);
}
}
}
inline_mapping_.erase(v);
}
return result;
}
const Expr* mutate(const Load* v) override {
const Buf* buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
if (v->indices().size() != buf->ndim()) {
throw malformed_input(
"Placeholder indexed access is inconsistent with its rank", v);
}
return mutate_loads(buf, v->indices());
}
// Replace the target variable with the caller expressions.
const Expr* mutate(const Var* v) override {
auto iter = inline_mapping_.find(v);
if (iter == inline_mapping_.end()) {
return v;
} else {
const Expr* expr = iter->second;
// Continue to transform the value from the lookup table.
return expr->accept_mutator(this);
}
}
// Handle random intrinsics which should be cached.
const Expr* mutate(const Intrinsics* v) override {
if (!in_producer_ || v->op_type() != kRand) {
return IRMutator::mutate(v);
}
// Create a new Let Statment for the random variable, which we can refer to
// multiple times and resolve the same value (ie. store it in a scalar
// rather than the Tensor).
const std::string& name = buf_->name_hint();
Var* new_var = new Var(name, v->dtype());
random_bindings_[new Let(new_var, v)] = index_vars_;
return new_var;
}
// Remove the buffer write from the inlined function.
Stmt* mutate(const Store* v) override {
// If the buf_ is in the outputs set, keep its statement intact. Otherwise,
// remove it.
if (v == producer_ && !outputs_.count(buf_)) {
in_producer_ = true;
producer_ = dynamic_cast<const Store*>(IRMutator::mutate(v));
TORCH_INTERNAL_ASSERT(producer_ != nullptr);
in_producer_ = false;
return nullptr;
} else {
return IRMutator::mutate(v);
}
}
// Any Random Instrinsics that were turned into vars must be inserted here.
Stmt* mutate(const Block* v) override {
std::vector<Stmt*> stmts;
for (Stmt* stmt : *v) {
Stmt* stmt_new = stmt->accept_mutator(this);
if (!stmt_new) {
continue;
}
if (stmt == stmt_new) {
stmt_new = Stmt::clone(stmt);
}
stmts.push_back(stmt_new);
}
return Block::make(stmts);
}
Stmt* mutate(const For* v) override {
For* res = dynamic_cast<For*>(IRMutator::mutate(v));
if (!res) {
return nullptr;
}
// Find any random bindings that should be defined in this loops body.
std::vector<Let*> bindings_this_loop;
const Var* fv = v->var();
for (auto& pair : random_bindings_) {
auto& index_var = pair.second;
if (index_var.erase(fv)) {
bindings_this_loop.push_back(pair.first);
}
}
for (auto* l : bindings_this_loop) {
res->body()->prepend_stmt(l);
random_bindings_.erase(l);
}
return res;
}
private:
const Buf* buf_;
const Store* producer_;
// Index Vars present in the producer.
std::unordered_set<const Var*> index_vars_;
std::vector<const Var*> producer_index_vars_;
std::unordered_map<const Var*, const Expr*> inline_mapping_;
// In the producer's scope - we need to bind any calls to rand().
bool in_producer_ = false;
std::unordered_map<Let*, std::unordered_set<const Var*>> random_bindings_;
std::unordered_set<const Buf*> outputs_;
};
bool LoopNest::computeInline(Stmt* s) {
auto* s_store = dynamic_cast<Store*>(s);
if (s_store == nullptr) {
throw std::logic_error("Could not find buffer producer to inline");
}
return computeInline(s_store->buf());
}
bool LoopNest::computeInline(const Buf* b) {
// If buf is used or defined in an ExternalCall, we cannot inline it
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
for (const auto& use : buf_load_store_uses.at(b)) {
Stmt* s = use.s;
if (dynamic_cast<ExternalCall*>(s)) {
return false;
}
}
// Find producers.
Store* relevant_store{nullptr};
auto stores = NodeFinder<Store>::find(root_stmt_);
for (auto* s : stores) {
if (s->buf() == b) {
auto reductions = NodeFinder<ReduceOp>::find(s);
if (!reductions.empty()) {
// Cannot inline a reduction computation
return false;
}
if (relevant_store != nullptr) {
// Cannot inline Buf with multiple Tensors
return false;
}
relevant_store = s;
}
}
TORCH_INTERNAL_ASSERT(relevant_store);
FunctionInliner inliner(relevant_store, output_bufs_);
root_stmt_ = root_stmt_->accept_mutator(&inliner);
return true;
}
// inlining buffers with multiple uses can create duplicated work, which can
// slow down cpu code generation but is enabled on gpu because it avoids
// difficult synchronization logic across blocks. Inlining trivial reads does
// not duplicate work
void LoopNest::inlineIntermediateBufs(bool allow_duplicated_work) {
std::unordered_set<const Buf*> bufs_to_inline;
auto intermediate_bufs = getIntermediateBufs();
if (allow_duplicated_work) {
bufs_to_inline.insert(intermediate_bufs.begin(), intermediate_bufs.end());
} else {
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
auto input_bufs = getInputBufs();
for (auto buf : intermediate_bufs) {
TORCH_INTERNAL_ASSERT(buf_load_store_uses.count(buf));
std::vector<BufLoadOrStoreUse>& uses = buf_load_store_uses[buf];
auto stores = c10::filter(
uses, [](const BufLoadOrStoreUse& use) { return use.isStore; });
// if the intermediate is the buffer formed from reading in the input
// tensors, always inline, bc we are not duplicating any work
// and avoiding an intermediary buffer
if (stores.size() == 1) {
if (auto store = dynamic_cast<Store*>(stores[0].s)) {
auto input_as_load = dynamic_cast<const Load*>(store->value());
if (input_as_load && input_bufs.count(input_as_load->buf())) {
bufs_to_inline.insert(buf);
continue;
}
} else {
// If S is not a store, it must be an ExternalCall.
TORCH_INTERNAL_ASSERT(dynamic_cast<ExternalCall*>(stores[0].s));
}
}
// all bufs will have at least one store (if they have > 1 they cant be
// inlined anyway)
size_t reads = uses.size() - 1;
// if only one read, we can inline it without duplicating work
if (reads <= 1) {
bufs_to_inline.insert(buf);
}
}
}
if (allow_duplicated_work) {
bufs_to_inline.insert(output_bufs_.begin(), output_bufs_.end());
}
for (auto b : bufs_to_inline) {
computeInline(b);
}
}
// TODO: Unify with DepTracker
class LoadOrStoreUseFinder : public IRVisitor {
public:
std::unordered_map<const Buf*, std::vector<BufLoadOrStoreUse>> findUses(
Stmt* s) {
uses_.clear();
s->accept(this);
return uses_;
}
private:
void visit(const Store* v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(Stmt*)v, true});
}
last_stmt_ = (Stmt*)v;
IRVisitor::visit(v);
}
void visit(const ExternalCall* v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(Stmt*)v, true});
}
last_stmt_ = (Stmt*)v;
for (const Buf* input_buf : v->buf_args()) {
if (loads_[input_buf].insert(last_stmt_).second) {
uses_[input_buf].push_back({last_stmt_, false});
}
}
IRVisitor::visit(v);
}
void visit(const Load* v) override {
if (loads_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({last_stmt_, false});
}
IRVisitor::visit(v);
}
Stmt* last_stmt_ = nullptr;
std::unordered_map<const Buf*, std::vector<BufLoadOrStoreUse>> uses_;
// Sets of loads and stores in order to keep the results unique
std::unordered_map<const Buf*, std::unordered_set<Stmt*>> loads_;
std::unordered_map<const Buf*, std::unordered_set<Stmt*>> stores_;
};
std::unordered_map<const Buf*, std::vector<BufLoadOrStoreUse>>
findLoadOrStoreUses(Stmt* s) {
LoadOrStoreUseFinder uf;
return uf.findUses(s);
}
class ContainedStmtsFinder : public IRVisitor {
public:
// Simply list all Stores and Block that are children of the given stmt
const std::unordered_set<Stmt*>& findContainedStmts(Stmt* s) {
contained_.clear();
s->accept(this);
return contained_;
}
private:
void visit(const Store* v) override {
contained_.insert((Stmt*)v);
IRVisitor::visit(v);
}
void visit(const ExternalCall* v) override {
contained_.insert((Stmt*)v);
IRVisitor::visit(v);
}
void visit(const Block* v) override {
contained_.insert((Stmt*)v);
IRVisitor::visit(v);
}
std::unordered_set<Stmt*> contained_;
};
bool containsAll(const std::vector<BufLoadOrStoreUse>& uses, Block* b) {
std::unordered_set<Stmt*> not_found;
for (auto use : uses) {
not_found.insert(use.s);
}
ContainedStmtsFinder csf;
const std::unordered_set<Stmt*>& contained = csf.findContainedStmts(b);
for (auto s : contained) {
not_found.erase(s);
}
return not_found.empty();
}
Block* findParentBlock(Stmt* s) {
while (s) {
if (auto b = dynamic_cast<Block*>(s)) {
return b;
}
s = s->get_parent();
}
return nullptr;
}
Block* findLowestContainingBlock(const std::vector<BufLoadOrStoreUse>& uses) {
// TODO: we're not using the most efficient algorithm here for simplicity.
// Replace with something more performant in case it becomes a bottleneck.
Block* b = findParentBlock(uses[0].s);
while (b && !containsAll(uses, b)) {
b = findParentBlock(b->get_parent());
}
return b;
}
Stmt* LoopNest::insertAllocFree(Stmt* stmt) {
auto intermediate_bufs = getIntermediateBufs();
if (intermediate_bufs.size() == 0ULL) {
return stmt;
}
Block* b = dynamic_cast<Block*>(stmt);
if (!b) {
b = new Block({stmt});
}
std::unordered_map<const Buf*, std::vector<BufLoadOrStoreUse>> uses =
findLoadOrStoreUses(stmt);
// Insert allocations and frees for temporary buffers in the innermost
// possible scope.
for (const Buf* buf : intermediate_bufs) {
Stmt* alloc = new Allocate(buf);
Stmt* free = new Free(buf);
Block* alloc_block = findLowestContainingBlock(uses.at(buf));
alloc_block->prepend_stmt(alloc);
alloc_block->append_stmt(free);
}
return b;
}
class StmtDeleter : public IRMutator {
public:
StmtDeleter(const std::unordered_set<const Stmt*>& targets)
: targets_(targets) {}
private:
Stmt* mutate(const Block* v) override {
std::vector<Stmt*> stmts;
for (auto* s : v->stmts()) {
if (targets_.count(s) == 0) {
Stmt* ns = s->accept_mutator(this);
if (ns) {
stmts.push_back(Stmt::clone(ns));
}
}
}
return Block::make(stmts);
}
const std::unordered_set<const Stmt*>& targets_;
};
void LoopNest::eliminateDeadStores() {
using namespace analysis;
MemDependencyChecker checker(getInputBufs(), getOutputBufs());
root_stmt_->accept(&checker);
std::unordered_set<const Stmt*> deadStores;
std::vector<std::shared_ptr<AccessInfo>> outputAccesses;
for (auto* o : getOutputBufs()) {
outputAccesses.push_back(checker.output(o));
}
for (auto& info : checker.getHistory()) {
if (!info->isWrite()) {
continue;
}
bool found = false;
for (auto& output : outputAccesses) {
if (checker.dependsIndirectly(output, info)) {
found = true;
break;
}
}
if (!found) {
deadStores.insert(info->stmt());
}
}
StmtDeleter deleter(deadStores);
root_stmt_ = root_stmt_->accept_mutator(&deleter);
}
void LoopNest::prepareForCodegen() {
// Expand reduction ops.
ReductionExpander reduceExpander;
root_stmt_ = reduceExpander.expand(root_stmt_);
root_stmt_ = FlattenIndexes(root_stmt_);
// Add allocs and frees for intermediate buffers at the global level.
root_stmt_ = insertAllocFree(root_stmt_);
}
namespace {
class IfThenElseReplacer : public IRMutator {
public:
IfThenElseReplacer(const IfThenElse* to_replace, const Expr* new_expr)
: to_replace_(to_replace), new_expr_(new_expr) {}
const Expr* mutate(const IfThenElse* i) override {
if (i == to_replace_) {
return new_expr_;
}
return i;
}
private:
const IfThenElse* to_replace_;
const Expr* new_expr_;
};
// Check if the given condition is optimizable.
// Specifically, this function looks for the following pattern:
// "var < expr"
//
// If this pattern is found, then this function:
// * sets `cond_var` to `var`,
// * sets `compared_value` to `expr`, and
// * returns true.
bool isConditionOptimizable(
const Expr* condition,
const Var** cond_var,
const Expr** compared_value) {
auto cs = dynamic_cast<const CompareSelect*>(condition);
if (cs && cs->compare_select_op() == kLT) {
auto var = dynamic_cast<const Var*>(cs->lhs());
if (var) {
*cond_var = var;
*compared_value = cs->rhs();
return true;
}
}
return false;
}
// Checks if the given if-then-else expression is a conditional that is
// generated from `aten::cat`.
//
// The expected format of conditionals is:
// IfThenElse(var < val1? 1 : 0,
// IfThenElse (var < val2? 1 : 0,
// IfThenElse (var < val3? 1 : 0,
// sub-expr1,
// sub-expr2),
// sub-expr3),
// sub-expr4)
//
// If such a conditional is found, this function also sets:
// * cond_var to the condition variable found in this expression.
// * comp_values to the list of compared values in the condition expressions.
// * sub_exprs to the list of sub-expressions that are the result of this
// if-then-else expression.
bool isConditionalFromCat(
const IfThenElse* ite,
const Var** cond_var,
std::vector<const Expr*>* comp_values,
std::vector<const Expr*>* sub_exprs) {
const Var* var = nullptr;
const Expr* comp_value;
if (isConditionOptimizable(ite->condition(), &var, &comp_value)) {
if (*cond_var == nullptr) {
*cond_var = var;
} else if (*cond_var != var) {
// Different condition variables found in nested if-then-else
// expressions. Can not optimize such cases.
return false;
}
auto true_ite = dynamic_cast<const IfThenElse*>(ite->true_value());
if (true_ite) {
if (!isConditionalFromCat(true_ite, cond_var, comp_values, sub_exprs)) {
return false;
}
} else {
sub_exprs->push_back(ite->true_value());
}
auto false_ite = dynamic_cast<const IfThenElse*>(ite->false_value());
if (false_ite) {
return false;
}
comp_values->push_back(comp_value);
sub_exprs->push_back(ite->false_value());
return true;
}
return false;
}
bool areConstantsAndSorted(const std::vector<const Expr*>& comp_values) {
std::vector<int> comp_consts;
comp_consts.reserve(comp_values.size());
for (auto c : comp_values) {
if (!c->isConstant()) {
return false;
}
comp_consts.push_back(immediateAs<int>(c));
}
return std::is_sorted(comp_consts.begin(), comp_consts.end());
}
} // namespace
bool LoopNest::optimizeConditionals() {
// Consider every store in the root_stmt_ and try to optimize the
// conditionals in that store.
auto stores = NodeFinder<Store>::find(root_stmt_);
std::unordered_set<For*> split_fors;
for (auto store : stores) {
const Var* cond_var = nullptr;
// `comp_values` represent the list of compared values that will be
// collected as we check for the expected pattern. Since that will
// only include the RHS of the conditions in the if-then-else expressions
// we need to start with `0` which is the initial bound, given that we
// only handle normalized loops (check for this is done below).
std::vector<const Expr*> comp_values = {new IntImm(0)};
std::vector<const Expr*> sub_exprs;
auto ifthenelse_exprs = NodeFinder<IfThenElse>::find(store);
if (ifthenelse_exprs.empty()) {
continue;
}
// We only check if the first if-then-else expression in this store
// corresponds to a conditional of the required format. If there are more
// than one such conditional, optimizing them requires checking if the
// conditions are exactly the same across them and handling all of them
// together. Currently, this is not handled.
if (!isConditionalFromCat(
ifthenelse_exprs.front(), &cond_var, &comp_values, &sub_exprs)) {
continue;
}
auto fors = getLoopStmtsFor(store);
if (cond_var != fors.back()->var()) {
// Currently, we only handle the case where the condition variable
// is the same as the inner-most loop variable.
// TODO: Handle all other cases here.
//
// In order to handle all other cases, the method `clone_and_replace`
// called below to clone the body of the loop with a new store needs
// to recursively handle cloning of the loops and other blocks it
// contains.
continue;
}
auto for_to_split = fors.back();
if (!LoopNest::isNormalized(for_to_split)) {
// Do not optimize this conditional since the condition variable
// refers to a loop that is not normalized.
continue;
}
if (split_fors.count(for_to_split)) {
// This loop has already been split while optimizing conditionals
// earlier.
//
// Optimizing multiple conditionals that require splitting the same loop
// is tricky. It requires checking if the conditions are exactly the same
// across them and handling all of them together by splitting the loop
// exactly once.
//
// Currently, this case is not supported.
continue;
}
split_fors.insert(for_to_split);
// `comp_values` needs to include the end bound, which is `for_to_split`
// stop value.
comp_values.push_back(for_to_split->stop());
// Check if all `comp_values` are constants and they are sorted.
if (!areConstantsAndSorted(comp_values)) {
continue;
}
// Remove all the if-then-else expressions from this store and create
// one loop per sub-expression.
std::vector<Stmt*> split_loops;
auto cond_to_replace = ifthenelse_exprs.front();
for (size_t i = 0; i < sub_exprs.size(); ++i) {
IfThenElseReplacer ifthenelseReplacer(cond_to_replace, sub_exprs[i]);
auto new_store = store->accept_mutator(&ifthenelseReplacer);
auto new_for_body =
for_to_split->body()->clone_and_replace(store, new_store);
auto new_for = new For(
for_to_split->var(),
comp_values[i],
comp_values[i + 1],
new_for_body);
LoopNest::normalize(new_for);
split_loops.push_back(new_for);
}
auto par = dynamic_cast<Block*>(for_to_split->get_parent());
par->replace_stmt(for_to_split, new Block(split_loops));
}
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return true;
}
void LoopNest::vectorizeInnerLoops() {
std::vector<For*> innerLoops;
std::vector<For*> worklist;
// Find outer-most For loops
if (For* rootF = dynamic_cast<For*>(root_stmt_)) {
worklist.push_back(rootF);
} else if (Block* body = dynamic_cast<Block*>(root_stmt_)) {
std::vector<Block*> blocks = {body};
while (blocks.size()) {
Block* b = blocks.back();
blocks.pop_back();
for (Stmt* s : *b) {
if (For* f = dynamic_cast<For*>(s)) {
worklist.push_back(f);
} else if (Block* b2 = dynamic_cast<Block*>(s)) {
blocks.push_back(b2);
}
}
}
}
// Traverse the For loop nest find inner-most loops, which are
// vectorization candidates.
while (worklist.size()) {
For* f = worklist.back();
worklist.pop_back();
bool containsSubLoops = false;
if (Block* body = dynamic_cast<Block*>(f->body())) {
for (Stmt* s2 : *body) {
if (For* f2 = dynamic_cast<For*>(s2)) {
containsSubLoops = true;
worklist.push_back(f2);
}
}
}
if (!containsSubLoops) {
innerLoops.push_back(f);
}
}
// vectorize inner loops.
for (For* loop : innerLoops) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* split1;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* tail1;
static const int kBodyVectorWidth = 8;
splitWithTail(loop, kBodyVectorWidth, &split1, &tail1);
vectorize(split1);
if (tail1) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* split2;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* tail2;
static const int kTailVectorWidth = 4;
splitWithTail(tail1, kTailVectorWidth, &split2, &tail2);
vectorize(split2);
}
}
}
void LoopNest::sliceHead(For* f, int factor, For** head, For** tail) {
if (dynamic_cast<const IntImm*>(f->start()) &&
dynamic_cast<const IntImm*>(f->stop())) {
int start_val = dynamic_cast<const IntImm*>(f->start())->value();
int stop_val = dynamic_cast<const IntImm*>(f->stop())->value();
int size_val = stop_val - start_val;
if (factor >= size_val) {
*head = f;
*tail = nullptr;
return;
}
}
if (!f) {
throw malformed_input("sliceHead attempted on null loop", f);
}
Block* p = dynamic_cast<Block*>(f->get_parent());
if (!p) {
throw malformed_input("sliceHead attempted on loop with no parent", p);
}
const Expr* head_end =
new Min(new Add(f->start(), new IntImm(factor)), f->stop(), true);
*head = new For(f->var(), f->start(), head_end, Stmt::clone(f->body()));
*tail = new For(
f->var(), head_end, f->stop(), Stmt::clone(f->body()), f->loop_options());
p->replace_stmt(f, *head);
p->insert_stmt_after(*tail, *head);
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*tail);
}
}
void LoopNest::sliceHead(For* f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For *head, *tail;
sliceHead(f, factor, &head, &tail);
}
void LoopNest::sliceTail(For* f, int factor, For** head, For** tail) {
if (dynamic_cast<const IntImm*>(f->start()) &&
dynamic_cast<const IntImm*>(f->stop())) {
int start_val = dynamic_cast<const IntImm*>(f->start())->value();
int stop_val = dynamic_cast<const IntImm*>(f->stop())->value();
int size_val = stop_val - start_val;
if (factor >= size_val) {
*head = nullptr;
*tail = f;
return;
}
}
if (!f) {
throw malformed_input("sliceTail attempted on null loop", f);
}
Block* p = dynamic_cast<Block*>(f->get_parent());
if (!p) {
throw malformed_input("sliceTail attempted on loop with no parent", p);
}
const Expr* tail_start =
new Max(f->start(), new Sub(f->stop(), new IntImm(factor)), true);
*head = new For(
f->var(),
f->start(),
tail_start,
Stmt::clone(f->body()),
f->loop_options());
*tail = new For(f->var(), tail_start, f->stop(), Stmt::clone(f->body()));
p->replace_stmt(f, *head);
p->insert_stmt_after(*tail, *head);
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*head);
}
}
void LoopNest::sliceTail(For* f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For *head, *tail;
sliceTail(f, factor, &head, &tail);
}
void LoopNest::splitWithTail(For* f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For *inner, *tail;
splitWithTail(f, factor, &inner, &tail);
}
void LoopNest::splitWithTail(For* f, int factor, For** inner, For** tail) {
if (!f) {
throw malformed_input("splitWithTail attempted on null loop", f);
}
Block* p = dynamic_cast<Block*>(f->get_parent());
if (!p) {
throw malformed_input("splitWithTail attempted on loop with no parent", p);
}
bool tail_is_needed = true;
if (dynamic_cast<const IntImm*>(f->start()) &&
dynamic_cast<const IntImm*>(f->stop())) {
int start_val = dynamic_cast<const IntImm*>(f->start())->value();
int stop_val = dynamic_cast<const IntImm*>(f->stop())->value();
int size_val = stop_val - start_val;
int tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
const IntImm* factor_expr = new IntImm(factor);
const Expr* size = new Sub(f->stop(), f->start());
const Expr* split_count = new Div(size, factor_expr);
const Expr* tail_size = new Mod(size, factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
const Var* i_inner = new Var(loop_var_name + "_inner", loop_var_dtype);
const Var* i_outer = new Var(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
const Expr* combined_index1 = new Add(new Mul(i_outer, factor_expr), i_inner);
if (tail_is_needed) {
const Var* i_tail = new Var(loop_var_name + "_tail", loop_var_dtype);
// x -> x.tail + outer.size * inner.size
const Expr* combined_index2 =
new Add(i_tail, new Mul(split_count, factor_expr));
Stmt* body_tail =
Substitute(Stmt::clone(f->body()), {{f->var(), combined_index2}});
*tail = new For(i_tail, new IntImm(0), tail_size, body_tail);
p->insert_stmt_after(*tail, f);
} else {
*tail = nullptr;
}
Stmt* body_inner = Substitute(f->removeBody(), {{f->var(), combined_index1}});
*inner = new For(i_inner, new IntImm(0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->setVar(i_outer);
f->setStart(new IntImm(0));
f->setStop(split_count);
f->setBody(*inner);
}
void LoopNest::splitWithMask(For* f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* inner;
splitWithMask(f, factor, &inner);
}
void LoopNest::splitWithMask(For* f, int factor, For** inner) {
Block* p = dynamic_cast<Block*>(f->get_parent());
if (!p) {
std::cerr << "Parent is not a Block!\n";
return;
}
bool tail_is_needed = true;
const Expr* start = IRSimplifier::simplify(f->start());
const Expr* stop = IRSimplifier::simplify(f->stop());
if (start->isConstant() && stop->isConstant()) {
int start_val = immediateAs<int>(start);
int stop_val = immediateAs<int>(stop);
int size_val = stop_val - start_val;
int tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
const IntImm* factor_expr = new IntImm(factor);
const Expr* size = new Sub(f->stop(), f->start());
// split_count = (size + factor - 1) / factor
const Expr* split_count =
new Div(new Sub(new Add(size, factor_expr), new IntImm(1)), factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
const Var* i_inner = new Var(loop_var_name + "_inner", loop_var_dtype);
const Var* i_outer = new Var(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
const Expr* combined_index = new Add(new Mul(i_outer, factor_expr), i_inner);
Stmt* body_inner = f->removeBody();
// TODO: is it ok that we're doing it eagerly? In the other implementation we
// are only materializing predicates at the last, lowering, step.
if (tail_is_needed) {
const IntImm* start = dynamic_cast<const IntImm*>(f->start());
if (!start || start->value() != 0) {
throw unimplemented_lowering();
}
const Expr* predicate =
CompareSelect::make(ExprHandle(f->var()), ExprHandle(f->stop()), kLT)
.node();
body_inner = Cond::make(ExprHandle(predicate), body_inner, nullptr);
}
body_inner = Substitute(body_inner, {{f->var(), combined_index}});
*inner = new For(i_inner, new IntImm(0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->setVar(i_outer);
f->setStart(new IntImm(0));
f->setStop(split_count);
f->setBody(*inner);
}
std::vector<For*> LoopNest::distributeLoop(
For* loop,
const std::unordered_set<Stmt*>& pivots) {
TORCH_INTERNAL_ASSERT(loop);
auto root = loop->get_parent();
if (root == nullptr) {
throw malformed_input("Loop without parent: ", loop);
}
auto root_block = dynamic_cast<Block*>(root);
if (root_block == nullptr) {
throw malformed_input(
"Loop's parent must be a Block, instead found ", root);
}
// Extract bodies for all the loops after distribution.
std::vector<Block*> new_loop_bodies;
auto new_loop_body = new Block({});
while (!loop->body()->empty()) {
auto s = loop->body()->front();
loop->body()->remove_stmt(s);
new_loop_body->append_stmt(s);
if (pivots.count(s)) {
new_loop_bodies.push_back(new_loop_body);
new_loop_body = new Block({});
}
}
if (!new_loop_body->empty()) {
new_loop_bodies.push_back(new_loop_body);
}
// The first loop body has to be in the original loop.
loop->body()->splice(loop->body()->begin(), new_loop_bodies.front());
std::vector<For*> new_loops = {loop};
// Create loops for all the remaining blocks.
// Add all the new loops to the parent block.
for (size_t i = 1; i < new_loop_bodies.size(); ++i) {
auto new_loop = loop->cloneWithNewBody(new_loop_bodies[i]);
root_block->insert_stmt_after(new_loop, new_loops.back());
new_loops.push_back(new_loop);
}
return new_loops;
}
std::vector<For*> LoopNest::distributeLoop(For* loop) {
std::unordered_set<Stmt*> stmtsInBlock(
loop->body()->begin(), loop->body()->end());
return distributeLoop(loop, stmtsInBlock);
}
std::vector<For*> LoopNest::distributeLoopOverInnerLoops(For* loop) {
auto loops = NodeFinder<For>::find(loop);
std::unordered_set<Stmt*> loopsSet(loops.begin(), loops.end());
return distributeLoop(loop, loopsSet);
}
bool areEqual(const Expr* expr1, const Expr* expr2) {
auto diff = IRSimplifier::simplify(new Sub(expr1, expr2));
return diff->isConstant() && (immediateAs<int>(diff) == 0);
};
bool areEqual(
const std::vector<const Expr*>& expr_list1,
const std::vector<const Expr*>& expr_list2) {
if (expr_list1.size() != expr_list2.size()) {
return false;
}
for (size_t i = 0; i < expr_list1.size(); ++i) {
if (!areEqual(expr_list1[i], expr_list2[i])) {
return false;
}
}
return true;
}
bool LoopNest::hasLoopCarriedDependence(For* loop) {
analysis::MemDependencyChecker analyzer;
loop->accept(&analyzer);
// High-level algorithm to check if two accesses to a buffer, A and B, one of
// which is a Store, result in a loop-carried dependence:
// 1. If the index expressions are equal in A and B, then that is a
// loop-independent dependence.
// 2. If the index expressions are not equal in A and B:
// a) if the bounds on the accesses overlap, then this is a
// loop-carried dependence.
// b) if the bounds on the accesses do not overlap, then there is no
// dependence.
//
// Implementation:
// For every pair of statements, S1 and S2, in the loop:
// * Get the loads and stores in S1 and S2.
// * For every store in S1 and load in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every load in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every store in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
for (auto it1 = loop->body()->begin(); it1 != loop->body()->end(); ++it1) {
for (auto it2 = std::next(it1); it2 != loop->body()->end(); ++it2) {
auto aStores = NodeFinder<Store>::find(*it1);
auto aLoads = NodeFinder<Load>::find(*it1);
auto bStores = NodeFinder<Store>::find(*it2);
auto bLoads = NodeFinder<Load>::find(*it2);
// ReadAfterWrite
for (auto& aStore : aStores) {
for (auto& bLoad : bLoads) {
if (aStore->buf() == bLoad->buf()) {
if (!areEqual(aStore->indices(), bLoad->indices())) {
if (isOverlapping(analyzer, aStore, bLoad)) {
return true;
}
}
}
}
}
// WriteAfterRead
for (auto& bStore : bStores) {
for (auto& aLoad : aLoads) {
if (bStore->buf() == aLoad->buf()) {
if (!areEqual(bStore->indices(), aLoad->indices())) {
if (isOverlapping(analyzer, bStore, aLoad)) {
return true;
}
}
}
}
}
// WriteAfterWrite
for (auto& aStore : aStores) {
for (auto& bStore : bStores) {
if (aStore->buf() == bStore->buf()) {
if (!areEqual(aStore->indices(), bStore->indices())) {
if (isOverlapping(analyzer, aStore, bStore)) {
return true;
}
}
}
}
}
}
}
return false;
}
bool LoopNest::fuseLoops(const std::vector<For*>& loops, For** fused) {
if (loops.empty()) {
return false;
}
if (loops.size() == 1) {
*fused = loops.front();
return true;
}
// Check if all the loops have the same parent.
auto root = loops.front()->get_parent();
for (auto l : loops) {
auto par = l->get_parent();
if (par == nullptr) {
return false;
}
if (par != root) {
return false;
}
}
auto root_block = dynamic_cast<Block*>(root);
if (root_block == nullptr) {
return false;
}
// Currently, we only handle cases where there are no statements between
// the given loops in their parents body. We can possibly relax this
// constraint by allowing statements that do not affect the loops being
// fused by performing some dependency analysis. TODO.
auto it = root_block->begin();
for (; it != root_block->end(); ++it) {
if (*it == loops.front()) {
break;
}
}
TORCH_INTERNAL_ASSERT(it != root_block->end());
for (auto l : loops) {
if (*it != l) {
return false;
}
++it;
}
// Check if bounds are the same for all the loops.
auto first_loop = loops.front();
auto first_loop_start = IRSimplifier::simplify(first_loop->start());
auto first_loop_stop = IRSimplifier::simplify(first_loop->stop());
for (size_t i = 1; i < loops.size(); ++i) {
auto curr_loop = loops[i];
auto curr_loop_start = IRSimplifier::simplify(curr_loop->start());
auto curr_loop_stop = IRSimplifier::simplify(curr_loop->stop());
if (!areEqual(curr_loop_start, first_loop_start)) {
return false;
}
if (!areEqual(curr_loop_stop, first_loop_stop)) {
return false;
}
}
// A lambda to fuse all the given loops.
auto fuse_all_loops = [](const std::vector<For*>& loops) {
auto first_loop = loops.front();
// Fuse the loops by taking all the statements from the second loops
// onwards and moving them into the first loop's body.
// This way the final fused loop will be the same as the first loop.
for (size_t i = 1; i < loops.size(); ++i) {
auto body = dynamic_cast<Block*>(Substitute(
Stmt::clone(loops[i]->body()),
{{loops[i]->var(), first_loop->var()}}));
first_loop->body()->splice(first_loop->body()->end(), body);
}
};
// We need to check if fusing the loops results in a loop-carried dependence.
// This check can be done only after the loops are fused into one. But if the
// check is violated, we need to return the given loops in the original form.
// So, we create a clone of all the loops, fuse them and check for this.
std::vector<For*> loops_copy;
loops_copy.reserve(loops.size());
for (const auto& l : loops) {
loops_copy.push_back(dynamic_cast<For*>(Stmt::clone(l)));
}
fuse_all_loops(loops_copy);
if (hasLoopCarriedDependence(loops_copy.front())) {
return false;
}
// Now that all conditions are satisfied, we fuse the given loops.
fuse_all_loops(loops);
*fused = loops.front();
for (size_t i = 1; i < loops.size(); ++i) {
root_block->remove_stmt(loops[i]);
}
return true;
}
For* findOuterFor(For* a, For* b) {
Stmt* s = b; // guess b is the latter.
while (s != nullptr) {
if (s == a) {
// yes, b is after a.
return a;
}
s = s->get_parent();
}
// check that the two are in the same loop nest.
s = a;
while (s != nullptr) {
if (s == b) {
// a is after b.
return b;
}
s = s->get_parent();
}
// a and b have no relationship.
return nullptr;
}
void LoopNest::reorderAxis(For* a, For* b) {
if (a == b) {
// nothing to do.
return;
}
// find inner and outer.
For* outer = findOuterFor(a, b);
if (outer == nullptr) {
throw std::runtime_error("Reordered a loop not in LoopNest");
}
For* inner = a == outer ? b : a;
std::deque<For*> internal_axes;
// Find relevant axes, store reversed.
Stmt* s = inner;
while (s != outer) {
if (For* f = dynamic_cast<For*>(s)) {
internal_axes.push_back(f);
}
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
s = s->get_parent();
}
internal_axes.push_back(outer);
Block* root = dynamic_cast<Block*>(outer->get_parent());
CHECK(root);
// Do a shallow copy of the inner blocks.
Block* body = new Block({});
body->splice(body->end(), inner->body());
For* before{outer};
For* after{nullptr};
For* last = internal_axes.front();
Stmt* newInner = body;
s = inner;
while (s != outer) {
if (auto cond = dynamic_cast<Cond*>(s->get_parent())) {
if (s == cond->true_stmt()) {
newInner = cond->cloneWithNewBody(newInner);
} else {
// s is the false branch of Cond
newInner = cond->cloneWithNewBodies(new Block({}), newInner);
}
}
s = s->get_parent();
}
// This is the major complexity in loop reordering: handling statements not in
// the straight line of the reorder. To handle this we partition the tree into
// the section before the critical path and after the critical path.
//
// An example of this pattern is:
// for i in ..
// Statement A
// for j in ..
// Statement B
// Statement C
//
// When reordering loop i and j we need to ensure that Statement A and C are
// still both executed with the loop extents of i, and that the three
// statements are not reordered (as much as possible).
for (auto* loop : internal_axes) {
// If the inner loop had a component after the loop we must wrap it in a For
// loop matching this level of the tree.
if (after != nullptr) {
after = loop->cloneWithNewBody(after);
}
bool pastMidpoint = false;
bool hadBeforeStmts = false;
for (auto I = loop->body()->begin(), E = loop->body()->end(); I != E;) {
// Be careful not to invalidate the iterator.
Stmt* s = *(I++);
if (s == last) {
// This is the midpoint.
loop->body()->remove_stmt(s);
if (!hadBeforeStmts) {
// If there were no existing statements this loop does not need to be
// preserved and we can roll it into the above loop.
last = loop;
}
pastMidpoint = true;
} else if (pastMidpoint) {
// Statements after the reordered path must be moved to a new tree after
// the reordered statement has occurred to preserve ordering.
loop->body()->remove_stmt(s);
if (after == nullptr) {
after = loop->cloneWithNewBody(s);
} else {
after->body()->append_stmt(s);
}
} else {
// We can leave any statements before the reordered loop alone, so long
// as we preserve the loop structure.
hadBeforeStmts = true;
}
}
}
// now we can actually reorder the chosen axes.
std::swap(internal_axes.front(), internal_axes.back());
// Create the reordered internals:
for (auto* loop : internal_axes) {
newInner = loop->cloneWithNewBody(newInner);
}
// Append the new statements to the root of the tree.
if (before->body()->nstmts() == 0) {
// If the top level is now empty, eliminate it.
root->replace_stmt(before, newInner);
} else {
root->insert_stmt_after(newInner, before);
}
if (after) {
root->insert_stmt_after(after, newInner);
}
}
bool isTrivialPermutation(const std::vector<size_t>& permutation) {
for (size_t i = 0; i < permutation.size(); ++i) {
if (permutation[i] != i) {
return false;
}
}
return true;
}
bool isValidPermutation(std::vector<size_t> permutation) {
std::sort(permutation.begin(), permutation.end());
return isTrivialPermutation(permutation);
}
std::vector<For*> LoopNest::reorder(
const std::vector<For*>& loops,
const std::vector<size_t>& permutation) {
if (loops.size() != permutation.size()) {
throw malformed_input("invalid permutation size");
}
if (isTrivialPermutation(permutation)) {
return loops;
}
if (!isValidPermutation(permutation)) {
throw malformed_input("invalid permutation for reorder");
}
if (loops.size() < 2) {
return loops;
}
if (!areLoopsPerfectlyNested(loops)) {
throw malformed_input("reorder is only allowed on perfectly nested loops");
}
auto parent = dynamic_cast<Block*>(loops.front()->get_parent());
if (parent == nullptr) {
throw malformed_input("parent of the loops must be a Block");
}
// Reorder the loops according to the permutation.
std::vector<For*> result(loops.size());
for (size_t i = 0; i < loops.size(); ++i) {
result[permutation[i]] = loops[i];
}
// Remove the bodies from all the loops.
auto innermost_body = loops.back()->removeBody();
// We use an empty block statement to replace the outermost loop
// so that we know the position where the outermost reordered loop
// is to be inserted.
auto empty_block = new Block({});
parent->replace_stmt(loops.front(), empty_block);
for (size_t i = 1; i < loops.size(); ++i) {
auto block = dynamic_cast<Block*>(loops[i]->get_parent());
TORCH_INTERNAL_ASSERT(block);
block->remove_stmt(loops[i]);
}
// Set the new bodies after reorder for all the loops.
for (size_t i = 0; i < result.size() - 1; ++i) {
result[i]->setBody(result[i + 1]);
}
result.back()->setBody(innermost_body);
parent->replace_stmt(empty_block, result.front());
return result;
}
bool LoopNest::areLoopsPerfectlyNested(const std::vector<For*>& loops) {
if (loops.size() < 2) {
return true;
}
for (size_t i = 0; i < loops.size() - 1; ++i) {
auto loop_body = loops[i]->body();
if (loop_body->nstmts() != 1 || loop_body->front() != loops[i + 1]) {
return false;
}
}
return true;
}
void LoopNest::unroll(For* f, Stmt** unrolled) {
Block* p = dynamic_cast<Block*>(f->get_parent());
if (!f) {
throw malformed_input("unroll attempted on null loop");
} else if (!p) {
throw malformed_input("unroll attempted on loop with no parent");
}
auto start_expr = IRSimplifier::simplify(f->start());
auto stop_expr = IRSimplifier::simplify(f->stop());
if (!start_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop start!");
}
if (!stop_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop stop!");
}
std::vector<Stmt*> unrolled_stmts;
int start_val = immediateAs<int>(start_expr);
int stop_val = immediateAs<int>(stop_expr);
for (int current = start_val; current < stop_val; ++current) {
for (const auto stmt : f->body()->stmts()) {
auto stmt_copy = Stmt::clone(stmt);
unrolled_stmts.push_back(Substitute(
stmt_copy,
{{f->var(), getImmediateByType(f->var()->dtype(), current)}}));
}
}
*unrolled = new Block(unrolled_stmts);
*unrolled = IRSimplifier::simplify(*unrolled);
p->replace_stmt(f, *unrolled);
}
void LoopNest::unroll(For* f) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Stmt* unrolled;
unroll(f, &unrolled);
}
bool LoopNest::isNormalized(For* f) {
if (f->start()->isConstant()) {
return immediateAs<int>(f->start()) == 0;
}
return false;
}
bool LoopNest::normalize(For* f) {
if (!f) {
throw malformed_input("normalize attempted on null loop");
}
if (isNormalized(f)) {
// No need to normalize anymore here.
return false;
}
auto for_body_normalized = Substitute(
f->body(),
{{f->var(), (VarHandle(f->var()) + ExprHandle(f->start())).node()}});
f->setBody(for_body_normalized);
f->setStop(new Sub(f->stop(), f->start()));
f->setStart(new IntImm(0));
return true;
}
// This function expects that there are 'num' loops perfectly nested within
// and including 'f'.
std::vector<For*> LoopNest::getLoopStmtsInLoopNest(For* f, size_t num) {
std::vector<For*> loops(num);
For* curr_for = f;
loops[0] = curr_for;
for (size_t i = 1; i < num; ++i) {
TORCH_INTERNAL_ASSERT(curr_for->body()->nstmts() == 1);
curr_for = dynamic_cast<For*>(curr_for->body()->front());
TORCH_INTERNAL_ASSERT(curr_for);
loops[i] = curr_for;
}
return loops;
}
bool LoopNest::flatten(const std::vector<For*>& loops, For** flattened) {
if (loops.empty()) {
throw malformed_input("flatten attempted on empty set of loops");
}
Block* p = dynamic_cast<Block*>(loops[0]->get_parent());
if (!p) {
throw malformed_input("flatten attempted on loops with no parent");
}
if (loops.size() == 1) {
// This loop nest is already flattened.
*flattened = loops[0];
return false;
}
// Check if all the loops correspond to a perfect loopnest:
// * every loop except the inner-most should have only one stmt, the For.
// Do not flatten, otherwise.
// This check also ensures we do not flatten reduction loops.
for (size_t i = 0; i < loops.size() - 1; ++i) {
if ((loops[i]->body()->nstmts() != 1) ||
(loops[i]->body()->front() != loops[i + 1])) {
return false;
}
}
// Normalize the loops before flattening.
// We need to normalize them from inner-most to outer because once the outer
// loop is normalized, the given pointers to inner loops point to old code.
// For the same reason, we can't store the normalized inner loops until after
// the outer-most loop is normalized.
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
for (size_t i = 0; i < loops.size(); ++i) {
size_t idx = loops.size() - i - 1;
LoopNest::normalize(loops[idx]);
}
// 'normalized' points to the outer-most loop in the normalized loopnest.
// Collect all the normalized loops.
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
auto normalized_loops = getLoopStmtsInLoopNest(loops.front(), loops.size());
auto flat_var = new Var(
normalized_loops[0]->var()->name_hint() + "_flat",
normalized_loops[0]->var()->dtype());
VarMapping var_mapping;
Expr* stop = new IntImm(1);
for (size_t i = 0; i < normalized_loops.size(); ++i) {
size_t idx = normalized_loops.size() - i - 1;
auto curr_loop = normalized_loops[idx];
Expr* div = new Div(flat_var, stop);
Expr* sub_expr = idx == 0 ? div : new Mod(div, curr_loop->stop());
var_mapping.push_back(std::make_pair(curr_loop->var(), sub_expr));
stop = new Mul(curr_loop->stop(), stop);
}
auto flattened_body =
Substitute(normalized_loops.back()->removeBody(), var_mapping);
normalized_loops.front()->setVar(flat_var);
normalized_loops.front()->setStart(new IntImm(0));
normalized_loops.front()->setStop(stop);
normalized_loops.front()->setBody(flattened_body);
*flattened = normalized_loops.front();
return true;
}
bool LoopNest::flatten(const std::vector<For*>& loops) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* flattened;
return flatten(loops, &flattened);
}
void LoopNest::compressBuffer(Buf* buf, Stmt* stmt) {
if (buf->initializer()) {
throw malformed_input("Can't compress buffer whose initializer is set");
}
// Loop iterations in NNC IR do not follow sequential semantics by default.
// In other words, the iterations of the loops could be executed in any
// random order without affecting correctness. This constraint in turn
// implies that there cant be any *inter-iteration* dependences
// (or *loop-carried* dependences) in NNC loops. So, any NNC IR with such
// dependences is considered invalid.
//
// Given the constraint above, for any pair of accesses to a buffer (where
// at least one of the access is a write), the accesses must be
// loop-independent on the innermost loop containing the accesses as well as
// all the loops above it. So, any dimension that uses only those loop
// variables to access the given buffer could be optimized away.
//
// Algorithm:
// * Find all the accesses to the given buf. (A)
// * Find the parent common to all accesses in A. (P)
// * Collect all the loops above P. (L)
// * Collect all the loop variables corresponding to L. (LV)
// * For every access a in A:
// * For the index I in every dimension of a:
// * If the variables in I are all in LV, mark this dimension
// for deletion.
// * For every dimension that is marked for deletion in ALL accesses in A:
// * Update the buffer to set the size of that dimension to 1.
// * Update all accesses in A to set the index in that dimension to 0.
auto writes = WritesToBuf::find(stmt, buf);
auto reads = StmtsReadingBuf::find(stmt, buf);
// All buffers must be read and written at least once.
// Is this a valid assumption? TODO
TORCH_INTERNAL_ASSERT(!writes.empty());
TORCH_INTERNAL_ASSERT(!reads.empty());
// Find the parent common to all the buffer accesses.
const Block* parent = dynamic_cast<Block*>(writes.front()->get_parent());
TORCH_INTERNAL_ASSERT(parent);
for (auto w : writes) {
parent = Block::getSharedParent(parent, w);
}
for (auto r : reads) {
parent = Block::getSharedParent(parent, r);
}
// Collect all the loops that are above the common parent.
auto loops = LoopNest::getEnclosingLoopNest(parent);
std::unordered_set<const Var*> loop_vars;
for (auto l : loops) {
loop_vars.insert(l->var());
}
// TODO: Need to handle other Stmts / Exprs that read / write buffers.
auto stores = NodeFinder<Store>::find(stmt);
auto loads = NodeFinder<Load>::find(stmt);
// Vector to indicate which dimensions could be compressed away.
std::vector<bool> dims(buf->dims().size(), true);
auto check_indices = [&](const std::vector<const Expr*>& indices) {
TORCH_INTERNAL_ASSERT(indices.size() == dims.size());
for (size_t i = 0; i < indices.size(); ++i) {
auto index_vars = NodeFinder<Var>::find(indices[i]);
for (auto iv : index_vars) {
if (loop_vars.count(iv) == 0) {
// A variable in this index is not in loop_vars.
// This implies that this dimension cannot be optimized away.
dims[i] = false;
break;
}
}
}
};
for (auto s : stores) {
if (s->buf() == buf) {
check_indices(s->indices());
}
}
for (auto l : loads) {
if (l->buf() == buf) {
check_indices(l->indices());
}
}
bool any_dim_to_compress = false;
for (auto d : dims) {
any_dim_to_compress |= d;
}
if (!any_dim_to_compress) {
return;
}
// Compress buffer by removing the marked dims.
std::vector<const Expr*> new_dims(buf->dims());
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_dims[i] = new IntImm(1);
}
}
buf->set_dims(new_dims);
// Modify all access to reflect the removed dims.
auto get_new_indices = [&](const std::vector<const Expr*>& indices) {
TORCH_INTERNAL_ASSERT(indices.size() == dims.size());
std::vector<const Expr*> new_indices(indices);
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_indices[i] = new IntImm(0);
}
}
return new_indices;
};
for (auto s : stores) {
if (s->buf() == buf) {
s->set_indices(get_new_indices(s->indices()));
}
}
for (auto l : loads) {
if (l->buf() == buf) {
l->set_indices(get_new_indices(l->indices()));
}
}
}
std::vector<For*> LoopNest::getLoopStmtsFor(Tensor* t) const {
Stmt* cur_stmt = getLoopBodyFor(t);
return getLoopStmtsFor(cur_stmt);
}
std::vector<For*> LoopNest::getLoopStmtsFor(const Buf* buf) const {
Stmt* cur_stmt = getLoopBodyFor(buf);
return getLoopStmtsFor(cur_stmt);
}
std::vector<For*> LoopNest::getLoopStmtsFor(Stmt* s) const {
std::vector<For*> result;
while (s) {
if (auto* loop = dynamic_cast<For*>(s)) {
result.push_back(loop);
}
s = s->get_parent();
}
std::reverse(result.begin(), result.end());
return result;
}
void LoopNest::setGPUBlockIndex(For* f, int block_index) {
f->set_gpu_block_index(block_index);
}
void LoopNest::setGPUThreadIndex(For* f, int thread_index) {
f->set_gpu_thread_index(thread_index);
}
void LoopNest::setBufferMap(
For* f,
const std::unordered_map<std::string, const Buf*>& map) {
f->set_buffer_map(map);
}
Stmt* LoopNest::getLoopBodyFor(Tensor* t) const {
return getLoopBodyFor(t->buf());
}
Stmt* LoopNest::getLoopBodyFor(const Buf* buf) const {
auto writes = WritesToBuf::find(root_stmt_, buf);
// special case for reduction Tensors, ignore the initializer if it's the only
// op:
if (writes.size() == 2) {
if (const Store* s = dynamic_cast<const Store*>(writes.back())) {
if (const ReduceOp* r = dynamic_cast<const ReduceOp*>(s->value())) {
return (Stmt*)s; // NOLINT
}
}
}
const Stmt* res = nullptr;
for (const auto* s : writes) {
if (!res) {
res = s;
continue;
}
res = Block::getSharedParent(res, s);
}
return (Stmt*)res; // NOLINT
}
For* LoopNest::getParentLoop(const Stmt* st) {
if (st == nullptr) {
return nullptr;
}
auto par = st->get_parent();
if (auto f = dynamic_cast<For*>(par)) {
return f;
}
return getParentLoop(par);
}
std::vector<For*> LoopNest::getEnclosingLoopNest(const Stmt* st) {
std::vector<For*> loops;
auto f = getParentLoop(st);
while (f) {
loops.push_back(f);
f = getParentLoop(f);
}
std::reverse(loops.begin(), loops.end());
return loops;
}
std::vector<const Stmt*> LoopNest::getAllWritesToBuf(const Buf* buf) const {
return WritesToBuf::find(root_stmt_, buf);
}
std::vector<For*> LoopNest::getAllInnermostLoopsWritingToBuf(
const Buf* buf) const {
auto writes = getAllWritesToBuf(buf);
std::vector<For*> innermost_loops;
innermost_loops.reserve(writes.size());
for (auto w : writes) {
innermost_loops.push_back(LoopNest::getParentLoop(w));
}
return innermost_loops;
}
std::vector<std::vector<For*>> LoopNest::getAllLoopNestsWritingToBuf(
const Buf* buf) const {
auto writes = getAllWritesToBuf(buf);
std::vector<std::vector<For*>> loopnests;
loopnests.reserve(writes.size());
for (auto w : writes) {
loopnests.emplace_back(LoopNest::getEnclosingLoopNest(w));
}
return loopnests;
}
Stmt* LoopNest::simplify() {
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return root_stmt_;
}
Stmt* FlattenIndexes(Stmt* s) {
IndexFlattener idx_flattener;
return idx_flattener.flatten(s);
}
// Auxiliary class for rewriting we're doing in `compute_at`. See
// LoopNest::computeAt for more details.
class LoopComputeAtRewriter : public IRMutator {
public:
LoopComputeAtRewriter(
const Buf* buf,
const Buf* new_buf,
std::vector<const Expr*> offsets)
: buf_(buf), new_buf_(new_buf), offsets_(std::move(offsets)) {}
private:
const Buf* buf_;
const Buf* new_buf_;
std::vector<const Expr*> offsets_;
const Expr* mutate(const Load* v) override {
if (v->buf() != buf_) {
return v;
}
std::vector<const Expr*> new_indices(v->indices().size());
for (const auto i : c10::irange(v->indices().size())) {
new_indices[i] =
IRSimplifier::simplify(new Sub(v->indices()[i], offsets_[i]));
}
return new Load(v->dtype(), new_buf_, new_indices);
}
};
static Store* getStoreStmtOfProducer(Stmt* s) {
if (Store* st = dynamic_cast<Store*>(s)) {
return st;
}
if (Block* b = dynamic_cast<Block*>(s)) {
for (Stmt* ss : *b) {
if (Store* st = dynamic_cast<Store*>(ss)) {
return st;
}
}
}
return nullptr;
}
static std::vector<const Var*> getOuterLoopIndexes(Stmt* s) {
std::vector<const Var*> res;
Stmt* cur = s;
while (cur) {
if (auto l = dynamic_cast<For*>(cur)) {
res.push_back(l->var());
}
cur = cur->get_parent();
}
return res;
}
class CacheReplacer : public IRMutator {
public:
CacheReplacer(
const Buf* buffer,
const Buf* cache,
std::vector<const Expr*>& offsets)
: buf_(buffer), cache_(cache), offsets_(offsets) {}
private:
const Expr* mutate(const Load* v) override {
const Buf* buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
// Map indices to call-parameters.
std::vector<const Expr*> newIndices;
TORCH_INTERNAL_ASSERT(offsets_.size() == v->indices().size());
for (size_t i = 0; i < v->indices().size(); ++i) {
const Expr* index = v->indices()[i]->accept_mutator(this);
const Expr* offset = offsets_[i];
const Expr* sub = IRSimplifier::simplify(new Sub(index, offset));
newIndices.push_back(sub);
}
return new Load(cache_, newIndices);
}
Stmt* mutate(const Store* v) override {
const Buf* buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
const Expr* newValue = v->value()->accept_mutator(this);
// Map indices to call-parameters.
std::vector<const Expr*> newIndices;
TORCH_INTERNAL_ASSERT(offsets_.size() == v->indices().size());
for (size_t i = 0; i < v->indices().size(); ++i) {
const Expr* index = v->indices()[i]->accept_mutator(this);
const Expr* offset = offsets_[i];
const Expr* sub = IRSimplifier::simplify(new Sub(index, offset));
newIndices.push_back(sub);
}
return new Store(cache_, newIndices, newValue);
}
const Buf* buf_;
const Buf* cache_;
std::vector<const Expr*>& offsets_;
};
LoopNest::AccessResult LoopNest::cacheAccesses(
const Buf* producer,
const std::string& name,
Stmt* consumer) {
const ReduceOp* reduceOp{nullptr};
auto stores = NodeFinder<Store>::find(consumer);
for (auto* store : stores) {
if (auto ro = dynamic_cast<const ReduceOp*>(store->value())) {
if (store->buf() != producer) {
continue;
}
if (reduceOp) {
throw std::runtime_error(
"can only cache accesses used by at most a single reduceOp");
return {nullptr, nullptr};
}
reduceOp = ro;
}
}
// Check bounds but don't care about AccessKind.
auto consumer_bounds_info = inferBounds(consumer, false);
auto bounds_it = consumer_bounds_info.find(producer);
if (bounds_it == consumer_bounds_info.end()) {
throw std::runtime_error("consumer does not use the Tensor produced");
return {nullptr, nullptr};
}
TORCH_INTERNAL_ASSERT(bounds_it->second.size() == 1);
TensorAccessBoundsInfo& info = bounds_it->second[0];
bool hasReads = info.kind == kLoad || info.kind == kMutate;
bool hasWrites = info.kind == kStore || info.kind == kMutate;
std::vector<std::string> var_names = {"i", "j", "k", "l", "m", "n", "o", "p"};
std::vector<const Expr*> tmp_dims;
std::vector<Var*> new_loop_vars;
std::vector<const Expr*> new_loop_vars_expr;
// Determine the size of the cache, and create a loop var for each dimension.
for (size_t i = 0; i < info.start.size(); ++i) {
const Expr* dim = IRSimplifier::simplify(
new Add(new Sub(info.stop[i], info.start[i]), new IntImm(1)));
tmp_dims.push_back(dim);
new_loop_vars.push_back(new Var(var_names[i % var_names.size()], kInt));
new_loop_vars_expr.push_back(new_loop_vars[i]);
}
// Create the var.
Buf* tmp_buf = new Buf(new Var(name, kHandle), tmp_dims, producer->dtype());
// determine the offsets for calls into the cache based off the loop start of
// each axis.
std::vector<const Expr*> tmp_params;
for (size_t i = 0; i < new_loop_vars.size(); ++i) {
tmp_params.push_back(new Add(new_loop_vars[i], info.start[i]));
}
// Replace acceses to the producer in the consumer with the cache.
CacheReplacer replacer(producer, tmp_buf, info.start);
Stmt* new_consumer =
IRSimplifier::simplify(consumer->accept_mutator(&replacer));
// replace the old consumer with the replaced consumer.
Block* consumer_block = nullptr;
// if the consumer is a block, we should mutate it in place.
if ((consumer_block = dynamic_cast<Block*>(consumer))) {
consumer_block->clear();
consumer_block->append_stmt(new_consumer);
} else {
consumer_block = dynamic_cast<Block*>(consumer->get_parent());
assert(consumer_block);
consumer_block->replace_stmt(consumer, new_consumer);
}
// If there's a reduction and we are operating on the reduce axis, we need to
// initialize the cache with 0s. Also, we can't just write the result straight
// back to the original buffer, since after parallelism the writes will race.
// Instead we need to create a new ReduceOp.
bool on_reduce_axis = false;
if (reduceOp) {
std::set<const Var*> reduce_args(
reduceOp->reduce_args().begin(), reduceOp->reduce_args().end());
std::set<const Var*> enclosing_vars;
for (auto enclosing_for_stmt : NodeFinder<For>::find(consumer)) {
enclosing_vars.insert(enclosing_for_stmt->var());
}
for (auto reduce_arg : reduce_args) {
if (enclosing_vars.find(reduce_arg) == enclosing_vars.end()) {
on_reduce_axis = true;
}
}
}
if (reduceOp && on_reduce_axis) {
// reduceOp means we had both loads and stores.
// Init cache to 0.
Stmt* tmp_init = new Store(
tmp_buf, new_loop_vars_expr, getImmediateByType(tmp_buf->dtype(), 0));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_init =
new For(new_loop_vars[i], new IntImm(0), tmp_dims[i], tmp_init);
}
consumer_block->insert_stmt_before(tmp_init, new_consumer);
// Reduce back to the original buffer:
Stmt* tmp_store = new Store(
producer,
tmp_params,
reduceOp->reducer()(
producer,
ExprHandle(new Load(tmp_buf, new_loop_vars_expr)),
tmp_params,
{}));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store =
new For(new_loop_vars[i], new IntImm(0), tmp_dims[i], tmp_store);
}
consumer_block->insert_stmt_after(tmp_store, new_consumer);
return std::make_pair(tmp_buf, new_consumer);
}
if (hasReads) {
// Fill the cache with values from the consumer.
Stmt* tmp_store =
new Store(tmp_buf, new_loop_vars_expr, new Load(producer, tmp_params));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store =
new For(new_loop_vars[i], new IntImm(0), tmp_dims[i], tmp_store);
}
consumer_block->insert_stmt_before(tmp_store, new_consumer);
}
if (hasWrites) {
// sync the cache back to the producer buf.
Stmt* tmp_store =
new Store(producer, tmp_params, new Load(tmp_buf, new_loop_vars_expr));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store =
new For(new_loop_vars[i], new IntImm(0), tmp_dims[i], tmp_store);
}
consumer_block->insert_stmt_after(tmp_store, new_consumer);
}
return std::make_pair(tmp_buf, new_consumer);
}
/*
* WHAT COMPUTE_AT DOES
* ====================
*
* Suppose we have two loops:
*
* for i in 0..100:
* for j in 0..200:
* A[i,j] = sin(i*j)
* for i in 0..100:
* for j in 0..199:
* B[i,j] = A[i,j] + A[i, j+1]
*
* If we compute these loops as is, we would have to allocate two buffers:
* 100x200 for A and 100x199 for B. To decrease the memory usage one can use
* compute_inline primitive, which would result in the following:
*
* for i in 0..100:
* for j in 0..199:
* B[i,j] = sin(i*j) + sin(i*(j+1))
*
* We now need only one buffer - 100x199 for B. However, we're now doing some
* redundant computations: we're calling `sin` twice as much as in the first
* version.
*
* Ultimately, we nede to choose at what point we prefer to compute values of
* A[i,j] - we can do it in the very beginning for the entire buffer A (the
* first option) or compute it on the fly when we compute B (the second option).
* There are also options in between those two: we can compute a part of B which
* is required for a computation of part of B, e.g. for a single row of B. The
* code would then look like:
*
* for i in 0..100:
* for j in 0..200:
* A[j] = sin(i*j)
* for j in 0..199:
* B[i,j] = A[j] + A[j+1]
*
* In this case we're only using 1x200 for A, and we're avoiding redundant
* computations.
*
* The purpose of `compute_at` is to achieve exactly this transformation.
*
* compute_at requires to specify What to compute and Where to compute: in our
* example we would call compute_at(What=`A[i,j] = sin(i*j)`, Where=`for i in
* 0..100`).
*
* More info about compute_at could be found in Halide's tutorials:
* https://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
*
* HOW COMPUTE_AT WORKS
* ====================
*
* The most important part of compute_at is bounds inference: we need to figure
* out what part of the used tensors we need to compute when we move the
* computation to a new scope. In the example above, we need bounds inference to
* tell us that in order to compute A at each iteration of the outer loop, we
* need to compute A within indices [i:i+1,0:200].
*
* This info allows us to conclude that we need a temp buffer of size 1x200.
*
* Once this is known we need to insert statements for allocation and freeing
* the temporary buffer and copy the original computation to fill the temp
* buffer with proper values. When we copy the computation we also must rewrite
* indices used in it: old indices are referring to the old loop and are not
* valid in the new loop.
*
* To easier follow the logic, let's examine an example. Suppose we start from
* the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* for cx in 0..100:
* consumer[cy,cx] = producer[cy,cx]
*
* And then we're running `compute_at(producer, cy)`.
*
* What we would like to get is the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* Allocate(temp, {1, 100})
* for ty in 0..1:
* for tx in 0..100:
* temp[ty,tx] = (ty+cy)*(tx+0)
* for cx in 0..100:
* consumer[cy,cx] = temp[0,cx]
* Free(temp)
*
* NB: this loop nest can and should be simplified (e.g. the producer loop can
* be removed since its result is no longer used), but this clean-up
* optimization is performed separately (currently, not performed at all).
*
* If we examine the final loop nest, we can identify that the following steps
* needs to be performed:
* - Bounds inference needs to tell us that we need a 1x100 buffer for temp.
* - Allocate and Free statements for this buffer need to be inserted to the
* loop.
* - A new loop-nest should be inserted to the loop CY for computing `temp`
* and it should replicate the loopnest of producer (PY,PX loops). The indices
* in the loop body need to be offset by (cy, 0) - the offsets come from
* bounds inference too.
* - The computation of `consumer` needs to be rewritten so that it uses
* `temp` instead of `producer`. The indices in the corresponding accesses
* also need to be offset.
*/
void LoopNest::computeAt(Stmt* s, For* f) {
Store* st = getStoreStmtOfProducer(s);
if (!st) {
return;
}
// Infer bounds info for all accesses that we make in the loop
auto loop_bounds_info = inferBounds(f->body());
// bounds_it holds bounds info for the store we're trying to move to
// the loop. If its result isn't accessed in the loop at all - do nothing and
// exit early.
auto bounds_it = loop_bounds_info.find(st->buf());
if (bounds_it == loop_bounds_info.end()) {
return;
}
// Compute dimensions of the temp buffer we would need to allocate
std::vector<const Expr*> dims = getBoundExtents(bounds_it->second);
// TODO: Use name-hint of the producer instead of "temp"
const Buf* temp_buf = new Buf("temp", dims, st->value()->dtype());
// Generate index variables for 'temp'
std::vector<const Expr*> temp_indices(dims.size());
for (const auto i : c10::irange(dims.size())) {
// TODO: Use name-hint of the producer indices instead of 'idx'
temp_indices[i] = new Var(std::string("idx") + c10::to_string(i), kInt);
}
// Prepare substitute rules for constructing the temp statement from the prod
// statement
// TODO: Instead of going up the loop nest we should go through the indices in
// the original tensor expression. The loops in the nest might've been
// modified (e.g. split or merged) so that the loop indices no longer
// correspond to the indices of the original expression and even their number
// might be different. In that case, the loop below would crash.
std::vector<const Var*> prod_indices = getOuterLoopIndexes(s);
std::vector<std::pair<const Var*, const Expr*>> rewrite_indices_map;
std::vector<const Expr*> offsets;
for (const TensorAccessBoundsInfo& p : bounds_it->second) {
for (const auto i : c10::irange(p.start.size())) {
if (offsets.size() <= i) {
offsets.push_back(p.start[i]);
} else {
offsets[i] =
IRSimplifier::simplify(new Min(offsets[i], p.start[i], true));
}
}
}
for (const auto i : c10::irange(prod_indices.size())) {
rewrite_indices_map.push_back(
{prod_indices[i], new Add(temp_indices[i], offsets[i])});
}
// Construct the temp statement
Stmt* bd = new Store(
temp_buf, temp_indices, Substitute(st->value(), rewrite_indices_map));
// Construct the loop nest for the temp computation
for (const auto i : c10::irange(dims.size())) {
// We're creating loops from innermost to outermost, so we need to access
// dimensions in reversed order.
size_t dim_idx = dims.size() - 1 - i;
bd = new For(
dynamic_cast<const Var*>(temp_indices[dim_idx]),
new IntImm(0),
dims[dim_idx],
bd);
}
// Add constructed stmts to the consumer loop
f->body()->prepend_stmt(bd);
// Rewrite accesses to producer in consumer with accesses to temp
LoopComputeAtRewriter lr(st->buf(), temp_buf, offsets);
Stmt* new_f = f->accept_mutator(&lr);
if (f != new_f) {
Block* bb = dynamic_cast<Block*>(f->get_parent());
bb->replace_stmt(f, new_f);
}
}
class RfactorStoreRewriter : public IRMutator {
public:
RfactorStoreRewriter(
const Buf* old_buf,
const std::vector<const Expr*>& old_indices,
const Buf* new_buf,
const Var* reduction_var)
: old_buf_(old_buf),
old_indices_(old_indices),
new_buf_(new_buf),
reduction_var_(reduction_var),
new_indices_(old_indices) {
new_indices_.push_back(reduction_var_);
}
const Expr* mutate(const Load* v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(old_indices_.size() == v->indices().size());
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
return new Load(new_buf_, new_indices_);
}
const Expr* mutate(const ReduceOp* v) override {
const Expr* body_new = v->body()->accept_mutator(this);
std::vector<const Var*> new_reduce_args;
for (auto* r : v->reduce_args()) {
if (r != reduction_var_) {
new_reduce_args.push_back(r);
}
}
return new ReduceOp(body_new, new_reduce_args, v->reducer());
}
Stmt* mutate(const Store* v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(old_indices_.size() == v->indices().size());
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
const Expr* new_value = v->value()->accept_mutator(this);
return new Store(new_buf_, new_indices_, new_value);
}
private:
const Buf* old_buf_;
const std::vector<const Expr*>& old_indices_;
const Buf* new_buf_;
const Var* reduction_var_;
std::vector<const Expr*> new_indices_;
};
bool LoopNest::rfactor(Stmt* st, For* target_for) {
Buf* tmp_buf = nullptr;
return rfactor(st, target_for, &tmp_buf);
}
bool LoopNest::rfactor(Stmt* st, For* outer_reduction_for, Buf** rfac_buf_ptr) {
Store* reduction_store = dynamic_cast<Store*>(st);
const ReduceOp* reduce_op =
dynamic_cast<const ReduceOp*>(reduction_store->value());
if (!reduce_op) {
// Not a reduction store
return false;
}
auto orig_buf = reduction_store->buf();
auto orig_buf_indices = reduction_store->indices();
const Var* reduction_var = outer_reduction_for->var();
std::set<const Var*> reduce_args = {
reduce_op->reduce_args().begin(), reduce_op->reduce_args().end()};
if (reduce_args.size() < 2) {
// Not enough reduction axis to do rfactor
return false;
}
// Verify that outer_reduction_for is a perfect loop nest with all loops being
// reductions
Stmt* cur = outer_reduction_for;
while (For* cur_for = dynamic_cast<For*>(cur)) {
if (!reduce_args.count(cur_for->var())) {
// output axis inside outer_reduction_for are not allowed
return false;
}
reduce_args.erase(cur_for->var());
Block* b = cur_for->body();
if (b->nstmts() != 1) {
return false;
}
cur = b->stmts().front();
}
if (cur != st) {
// The reduction store is not a single stmt in the innermost loop - bail in
// that case
return false;
}
if (!reduce_args.empty()) {
// This is not the outermost reduction axis
return false;
}
// assert: reduce_axis match loop vars from outer_reduction_for and inside
// assert: no other stmts in outer_reduction_for or its child loops
std::vector<const Expr*> rfac_dims = orig_buf->dims();
const Expr* extra_dim = IRSimplifier::simplify(
new Sub(outer_reduction_for->stop(), outer_reduction_for->start()));
rfac_dims.push_back(extra_dim);
const Expr* rfac_init =
new Cast(reduce_op->dtype(), reduce_op->reducer().initializer());
*rfac_buf_ptr = new Buf(
orig_buf->name_hint() + "_rfac",
rfac_dims,
reduce_op->dtype(),
rfac_init);
Buf* rfac_buf = *rfac_buf_ptr;
// Rewrite the original reduction store to use the temporary rfac buffer:
// 1) X[*indexes] --> T[*indexes + {reduction_var}]
// 2) reduce_axis -= {reduction_var}
RfactorStoreRewriter rfac_rewriter(
orig_buf, orig_buf_indices, rfac_buf, reduction_var);
dynamic_cast<Block*>(st->get_parent())
->replace_stmt(st, st->accept_mutator(&rfac_rewriter));
// Insert a store for the final reduction over the temp buffer into the
// original buffer:
// X[*indexes] = ReduceOp(X[*indexes] + T[*indexes + {reduction_var}],
// reduce_axis={reduction_var})
Block* b = outer_reduction_for->body();
TORCH_INTERNAL_ASSERT(b->nstmts() == 1);
Stmt* first_reduction_loop = b->stmts().front();
auto rfac_buf_indices = orig_buf_indices;
rfac_buf_indices.emplace_back(reduction_var);
const Expr* final_reduce_load = new Load(rfac_buf, rfac_buf_indices);
outer_reduction_for->body()->insert_stmt_after(
new Store(
orig_buf,
orig_buf_indices,
reduce_op->reducer()(
orig_buf, final_reduce_load, orig_buf_indices, {reduction_var})),
first_reduction_loop);
// Insert an initialization store for the temp buffer:
// T[a,b,c] = init
outer_reduction_for->body()->insert_stmt_before(
new Store(rfac_buf, rfac_buf_indices, rfac_init), first_reduction_loop);
return true;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch