pytorch/tools/autograd/gen_python_functions.py
Edward Z. Yang 7bd2db997e
Port cuDNN RNN bindings to ATen (#4881)
* Add transpose() to TensorGeometry.

This code is dead; I briefly used it in my RNN patchset but
eventually rewrote it to not be necessary.  However, it seemed
like a useful gadget so I kept it.  In general, it seems that it
would be useful for TensorGeometry to support all operations that
Tensor does, but it only computes the changes to sizes/strides
instead of actually doing the computation.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Turn on wrap_dim behavior for TensorGeometry

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Support for hard-coded differentiable outputs.

Some outputs of functions are nondifferentiable, and should always
be returned with requires_grad=False.  Traditionally, we have used
the presence of 'grad' to signal that only the first output is
differentiable, and the rest are not, but cudnn_rnn (to be
implemented) breaks this pattern; its first three outputs are differentiable,
but its last output is a buffer that is just consumed by backwards.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* TensorGeometry constructor from just sizes

The sizes are assumed to form a contiguous tensor, and we compute
the strides we would get in that case.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Support saving TensorList for backwards.

There is some back story here.  Saved TensorList in backwards will
be used by cudnn_rnn, and it is worth asking, why is it necessary to
save a list of tensors?  Indeed, *technically* speaking a list of
tensors is not necessary, we only need to save the sizes of each
of the weight tensors.  (We need the sizes because cuDNN is only
going to blast the derivative of weights into a flat buffer, but
we need to match the sizes of the views into the buffer when we
eventually return the derivatives.)

However, it was surprisingly awful trying to implement passing just
sizes, because as non-Tensor arguments, the JIT interpreter generation
code is expected to handle all non-Tensor arguments as attributes in the
trace, and our attributes struct doesn't actually know how to do
arrays of arrays.  Saved TensorList code was much easier to get working,
so that's what this patch does.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* MatrixRef - an ArrayRef with a stride, making it a 2D ArrayRef.

Like ArrayRef, this class does not own the underlying data, it is expected
to be used in situations where the data resides in some other buffer.
This is intended to be trivially copyable, so it should be passed by
value.

For now, 2D only (so the copies are actually cheap, without having
to write a SmallVector class) and contiguous only (so we can
return non-strided ArrayRef on index).

The intended use-case (not in this commit) is to make it easier to
work with RNN weights, which are num_weights x num_layers matrix of
parameters.

P.S. dimension 0 indexes rows, dimension 1 indexes columns

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Generalize getDataType in Descriptors.h

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Change copy_range to take Tensor, and change cat_tensors_backward accordingly

Should a backward function return a Variable or a Tensor?  For the most
part, all of our backward functions return Tensor, except cat_tensors_backward,
which returns a variable_list (which is really the only thing that matters,
because Tensor and Variable are interconvertible).  But this is kind of weird,
because it means that you can't implement a backwards in ATen that returns
a std::vector<Tensor>, and then hook it up transparently with the derivatives
code.  So I switched it over.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Support 5-ary return Tensor tuple.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Support code generation with mixed Tensor/TensorList in output.

I don't think I ended up using this in cudnn_rnn, but this seems
it might be useful for someone else later.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Support 4-ary boolean array

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add support for retain_variables in tools/autograd/derivatives.yaml

'retain_variables', a bool which is true if a user has specified
that saved variables should be retained in case the backwards is
run again later.  This allows an optimization where we can
destroy saved buffers if we know variables are not going to be retained,
e.g., it is (will be) used by _cudnn_rnn

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Lazily initialize cuDNN descriptors

Previously, cuDNN descriptors were eagerly allocated as soon
as a FooDescriptor object was created.  However, in some uses
of TensorDescriptor, this is problematic: some tensors are optional
and cuDNN's API expects to be given a nullptr TensorDescriptor
in this case, not an uninitialized (but allocated) descriptor.

Lazily initializing the descriptors makes it less likely for
us to use uninitialized memory and matches the usual semantics of
unique_ptr.  It's good sense!

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Port cuDNN RNNs to ATen.

This brings three new functions:
  - _cudnn_rnn_flatten_weight: flatten a matrix of weight tensors into
    a single contiguous weight buffer as required by cuDNN
  - _cudnn_rnn: run RNN forwards
  - _cudnn_rnn_backward: run RNN backwards

RNNs have a lot of parameters, so we restructured what was previously
a single 'fn' object that recorded all the parameters into three
objects: RNNDescriptorParams, TensorDescriptorListParams and
DropoutDescriptorParams.

We make use of MatrixRef to organize the weight tensors (which are
weight/bias x number of layers), but I did not teach the codegen
how to pass these as arguments/return values natively, so instead
a MatrixRef is passed as its constituent ArrayRef and int64_t stride0.

cudnn_rnn has three differentiable outputs and one nondifferentiable
one, so it makes use of the support for hard-coded differentiable outputs.

I haven't deleted all of the descriptor code from Python, because dropout
initialization still goes through this codepath, that should be fixed soon
but I don't see it as essential for this PR.

This commit also removes the last use of NestedIOFunction from PyTorch.

There are some shenanigans with cuDNN dropout descriptor initialization,
see below:

Note [cuDNN dropout descriptor initialization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In most cases, setting descriptors in cuDNN is cheap (e.g.,
cudnnSetTensorNdDescriptor).  However, this is not the case for
cudnnSetDropoutDescriptor: in cuDNN 6/7 (and possibly others) it does an
expensive precomputation to initialize the random number generator states.  In
cuDNN 6, this is the ONLY official mechanism to initialize a dropout descriptor,
which means that law-abiding clients were expected to generate a dropout
descriptor once and cache it.  However, our ATen interface is (1) stateless (so
we can't cache the descriptors) and (2) does not accept arbitrary user types in
its interface (so we can't pass the descriptor in).  This puts us in a pickle.

In cuDNN 7, a new function, cudnnRestoreDropoutDescriptor was added, which
forgoes the expensive initialization process, and can initialize the
descriptor with a pre-initialized state CUDA tensor.  This is great, because
it means we can simply pass in the state tensor and then initialize the
descriptor internally.  Unfortunately, this function is not available in
cuDNN 6.

To work around this, we break the cuDNN abstraction barrier, and have
the struct layout of the underlaying dropout descriptor.  With this struct,
we can reimplement cudnnRestoreDropoutDescriptor from scratch. Great!

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Fix cuDNN 7 behavior.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Delete some unused, controversial methods from MatrixRef.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add missing filter_dim_a slice

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Replace nested for-loop with itertools.chain.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* CR comment on mut_desc()

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Refactor DropoutDescriptor API.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Use cached CurrentDeviceProperties from Context.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Document _cudnn_rnn outputs.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Improve fmap docs, convert some functions to use it.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Move IndexRange to autograd/function.h

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Elaborate on CUDNN_STATUS_INVALID_VALUE return some more.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add an all-in-one setter for RNNDescriptorParams.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Print what the unrecognized RNN mode was

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* RNN TensorDescriptor improvements

- Have an explicit size/stride overload for set TensorDescriptor,
  so you don't have to create a goofy view to feed in.

- Change the padding to 3D rather than 5D, which is all you actually
  need (it's just 2D that is not supported by cuDNN API.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Fix implementation of cudnnRestoreDropoutDescriptor, plus test.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Better comments about input layout.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add comment about no-DropoutDescriptor argument RNNDescriptor function.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Rename vocab_size back to input_size.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Don't use backslash in comment.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Bugfix for contiguous TensorGeometry calculation.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Don't allocate a dummy tensor when setting TensorDescriptor for flatten_weight.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Make contiguity errors more user-friendly.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* s/fn.dropout.train/fn_train/

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* s/_cudnn_rnn_backward_grad/_cudnn_rnn_backward_input/

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Make dcx properly undefined when not required.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Remove old TODO.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add state size check in cudnnRestoreDropoutDescriptor

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Explicitly narrow int64_t to size_t

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Restore copyParams comment.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Update benchmark numbers, and slight engineering improvements.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Typofix.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-02-05 13:54:11 -05:00

528 lines
20 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn object.
#
from collections import defaultdict
import re
from .nested_dict import nested_dict
from tools.shared.module_loader import import_module
from .gen_autograd import template_path
from .utils import write
CodeTemplate = import_module('code_template', 'aten/src/ATen/code_template.py').CodeTemplate
# These functions require manual Python bindings or are not exposed to Python
SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'clamp.*', 'is_cuda', 'is_sparse', 'size', 'stride',
'.*_backward', '.*_backward_out', '.*_forward', '.*_forward_out',
'sparse_raw_resize_',
]
PY_VARIABLE_METHODS_CPP = CodeTemplate.from_file(template_path + '/python_variable_methods.cpp')
PY_VARIABLE_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_variable_methods_dispatch.h')
PY_TORCH_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_torch_functions.cpp')
PY_TORCH_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_torch_functions_dispatch.h')
PY_NN_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_nn_functions.cpp')
PY_NN_FUNCTIONS_H = CodeTemplate.from_file(template_path + '/python_nn_functions.h')
PY_NN_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_nn_functions_dispatch.h')
PY_VARIABLE_METHOD_VARARGS = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
${signatures}
});
${unpack_self}
PyObject* parsed_args[${max_args}];
auto r = parser.parse(args, kwargs, parsed_args);
${dispatch}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
""")
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
${unpack_self}
return wrap(${dispatch_name}(${actuals}));
END_HANDLE_TH_ERRORS
}
""")
PY_VARIABLE_CASE = CodeTemplate("""\
${cond} (r.idx == ${i}) {
${call_dispatch}
""")
PY_VARIABLE_OUT = CodeTemplate("""\
if (r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
PY_VARIABLE_CALL_DISPATCH = CodeTemplate("""\
${dispatch_name}(${actuals})""")
PY_VARIABLE_SET_REQUIRES_GRAD = CodeTemplate("""\
set_requires_grad(${call_dispatch}, ${requires_grad})""")
PY_VARIABLE_WRAP = CodeTemplate("""\
return wrap(${call_dispatch});""")
PY_VARIABLE_DISPATCH = CodeTemplate("""\
inline ${return_type} ${dispatch_name}(${formal_args}) {
${AutoNoGIL}
${AutoGPU}
return ${dispatch_call}(${dispatch_args});
}
""")
PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
{"${name}", (PyCFunction)${pycname}, ${flags}, NULL},""")
UNPACK_SELF = "auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;"
PYTHON_FUNCTION_SIGNATURE = CodeTemplate("""\
${name}(${typed_args})""")
# XXX: if you got here because of an assertion failure, it doesn't mean
# it's enough to just extend the list here. Before you do this, make sure
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
SUPPORTED_RETURN_TYPES = {
'Tensor', 'std::tuple<Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor>',
'std::vector<Tensor>',
'Scalar', 'bool', 'int64_t', 'void*'
}
def should_generate_python_binding(declaration):
name = declaration['name']
for pattern in SKIP_PYTHON_BINDINGS:
if re.match('^' + pattern + '$', name):
return False
# TODO: fix handling of SparseTensor. We don't want to generate Python
# bindings to SparseTensor overloads, such as add(Tensor, SparseTensor),
# since the Tensor-based signature already dynamically dispatches correctly.
# However, _sparse_mask only has a SparseTensor signature so we need to bind
# that function.
for arg in declaration['arguments']:
if arg['type'] == 'SparseTensor' and declaration['name'] != '_sparse_mask':
return False
return True
def gen_py_variable_methods(out, declarations):
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
declaration['mode'] != 'NN' and
'Tensor' in declaration['method_of'])
py_variable_methods = group_declarations_by_name(declarations, should_bind)
env = create_python_bindings(py_variable_methods, True)
write(out, 'python_variable_methods.cpp', PY_VARIABLE_METHODS_CPP, env)
write(out, 'python_variable_methods_dispatch.h', PY_VARIABLE_DISPATCH_H, env)
def gen_py_nn_functions(out, declarations):
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
declaration['mode'] == 'NN')
py_nn_functions = group_declarations_by_name(declarations, should_bind)
env = create_python_bindings(py_nn_functions, has_self=False, is_module=True)
write(out, 'python_nn_functions.cpp', PY_NN_FUNCTIONS_CPP, env)
write(out, 'python_nn_functions.h', PY_NN_FUNCTIONS_H, env)
write(out, 'python_nn_functions_dispatch.h', PY_NN_DISPATCH_H, env)
def gen_py_torch_functions(out, declarations):
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
declaration['mode'] != 'NN' and
('namespace' in declaration['method_of'] or
'Type' in declaration['method_of']))
py_torch_functions = group_declarations_by_name(declarations, should_bind)
env = create_python_bindings(py_torch_functions, has_self=False)
write(out, 'python_torch_functions.cpp', PY_TORCH_FUNCTIONS_CPP, env)
write(out, 'python_torch_functions_dispatch.h', PY_TORCH_DISPATCH_H, env)
def group_declarations_by_name(declarations, should_bind_fn):
"""Group declarations by name ignoring _out suffix"""
groups = defaultdict(list)
for declaration in declarations:
name = declaration['name']
if should_bind_fn(declaration):
if name.endswith('_out'):
groups[name[:-4]].append(declaration)
else:
groups[name].append(declaration)
return groups
def create_python_bindings(python_functions, has_self, is_module=False):
"""Generates Python bindings to ATen functions"""
py_methods = []
py_method_defs = []
py_method_dispatch = []
unpack_methods = {
'const Tensor &': 'tensor',
'SparseTensor': 'tensor',
'Tensor &': 'tensor',
'Generator *': 'generator',
'Storage &': 'storage',
'int64_t': 'toInt64',
'bool': 'toBool',
'double': 'toDouble',
}
unpack_with_default_methods = {
'IntList': 'setDefaultIntlist',
'Scalar': 'scalarWithDefault',
'int64_t': 'toInt64WithDefault',
'bool': 'setDefaultBool',
'double': 'setDefaultDouble',
}
def first_tensor_arg(arguments):
for arg in arguments:
if arg['simple_type'] in {'Tensor', 'TensorList'}:
return arg['name']
return None
def auto_gpu(option):
tensor_arg = first_tensor_arg(option['arguments'])
if tensor_arg is None:
return ''
return 'AutoGPU auto_gpu({});'.format(tensor_arg)
def emit_single_dispatch(declaration, out_idx, base_env):
env = {}
simple_return_type = declaration['return_type'].replace(' &', '')
assert simple_return_type in SUPPORTED_RETURN_TYPES, \
declaration['name'] + ' returns unsupported type: ' + simple_return_type
body = []
actuals = []
formal_args = []
arg_idx = 0
def is_output(arg):
return arg.get('output', False)
inputs = [arg for arg in declaration['arguments'] if not is_output(arg)]
outputs = [arg for arg in declaration['arguments'] if is_output(arg)]
def parse_arg(arg, arg_index, unpack_args=False):
name = arg['name']
typename = arg['type']
if typename.startswith('IntList['):
typename = 'IntList'
if typename.startswith('LongTensor'):
typename = 'Tensor'
if arg.get('python_default_init'):
assert typename in unpack_with_default_methods, \
'`{}` type is not supported in python_default_init'.format(typename)
unpack_with_default = unpack_with_default_methods.get(typename)
default_expr = arg.get('python_default_init')
expr = 'r.{}({}, {})'.format(unpack_with_default, arg_index, default_expr)
else:
unpack = unpack_methods.get(typename, typename.lower())
expr = 'r.{}({})'.format(unpack, arg_index)
if unpack_args:
body.append('auto {} = {};'.format(name, expr))
expr = name
if typename == 'Storage &':
expr = '*' + expr
if typename == 'SparseTensor':
expr = 'SparseTensor({})'.format(expr)
dispatch_type = typename
if dispatch_type == 'Tensor':
dispatch_type = 'const Tensor &'
elif dispatch_type == 'Tensor &':
dispatch_type = 'Tensor'
formal = '{} {}'.format(dispatch_type, name)
return expr, formal
def append_actuals_formals(actual, formal):
actuals.append(actual)
formal_args.append(formal)
unpack = any(arg.get('python_default_init') for arg in inputs)
for arg in inputs:
if has_self and arg['name'] == 'self':
formal_args.append('Tensor & self')
actuals.append('self_')
continue
append_actuals_formals(*parse_arg(arg, arg_idx, unpack))
arg_idx += 1
if len(outputs) == 1:
append_actuals_formals(*parse_arg(outputs[0], arg_idx))
elif len(outputs) > 1:
N = len(outputs)
body.append('auto results = r.tensorlist_n<{}>({});'.format(N, arg_idx))
for i, arg in enumerate(outputs):
formal_args.append('Tensor & {}'.format(arg['name']))
actuals.append('results[{}]'.format(i))
env['unpack_args'] = []
env['formal_args'] = formal_args
env['actuals'] = actuals
if 'call_args' in declaration:
env['dispatch_args'] = declaration['call_args']
else:
env['dispatch_args'] = [arg['name'] for arg in declaration['arguments']]
if 'Tensor' in declaration['method_of']:
env['dispatch_args'] = [arg for arg in env['dispatch_args'] if arg != 'self']
env['dispatch_call'] = 'self.{}'.format(declaration['name'])
elif 'namespace' in declaration['method_of']:
env['dispatch_call'] = 'at::{}'.format(declaration['name'])
else:
env['dispatch_call'] = 'default_type().{}'.format(declaration['name'])
env['AutoNoGIL'] = 'AutoNoGIL no_gil;'
env['AutoGPU'] = auto_gpu(declaration)
requires_grad = None
if len(declaration.get('python_binding_arguments', [])) > 1:
raise RuntimeError("found more than 1 entry in python_binding_arguments")
for arg in declaration.get('python_binding_arguments', []):
if not arg['name'] == 'requires_grad' or not arg['type'] == 'bool':
raise RuntimeError(("found {} in python_binding_arguments but only "
"bool requires_grad is supported".format(arg)))
# we have to use out_idx if there is an out variant because the base variant
# won't have the full arg_idx count
requires_grad_idx = arg_idx if out_idx is None else out_idx + 1
requires_grad = parse_arg(arg, requires_grad_idx)[0]
env = nested_dict(env, nested_dict(base_env, declaration))
call_dispatch = PY_VARIABLE_CALL_DISPATCH.substitute(env)
if requires_grad:
call_dispatch = PY_VARIABLE_SET_REQUIRES_GRAD.substitute(env, call_dispatch=call_dispatch,
requires_grad=requires_grad)
body.append(PY_VARIABLE_WRAP.substitute(env, call_dispatch=call_dispatch))
py_method_dispatch.append(PY_VARIABLE_DISPATCH.substitute(env))
return body
def emit_dispatch(i, dictionary, base_env):
if 'out' in dictionary:
out_idx = len([arg for arg in dictionary['out']['arguments']
if not arg.get('output', False)])
env = {}
env['call_dispatch_out'] = emit_single_dispatch(dictionary['out'], out_idx, base_env)
env['call_dispatch'] = emit_single_dispatch(dictionary['base'], out_idx, base_env)
body = PY_VARIABLE_OUT.substitute(env, out_idx=out_idx).split('\n')
else:
body = emit_single_dispatch(dictionary['base'], None, base_env)
cond = 'if' if i == 0 else '} else if'
return PY_VARIABLE_CASE.substitute(i=i, cond=cond, call_dispatch=body)
def get_requires_grad_argument(declaration):
requires_grad_arg = []
has_tensor_input_arg = False
for arg in declaration['arguments']:
if arg.get('output', False):
continue
typename = arg['simple_type']
if typename in ['Tensor', 'TensorList']:
has_tensor_input_arg = True
if arg['name'] == 'requires_grad':
raise ValueError("argument named requires_grad not supported")
has_tensor_return = False
for ret in declaration['returns']:
if ret['dynamic_type'] in ['Tensor', 'TensorList']:
# this probably won't work if one of the returns is not a tensor, but it will
# produce a compile-time error that is obvious
has_tensor_return = True
if (not has_tensor_input_arg or name.endswith('_like')) and has_tensor_return:
arg = {
'default': False,
'default_init': False,
'dynamic_type': 'bool',
'kwarg_only': True,
'name': 'requires_grad',
'type': 'bool',
'simple_type': 'bool',
}
requires_grad_arg.append(arg),
return requires_grad_arg
def process_function(name, declarations):
for declaration in declarations:
declaration['python_binding_arguments'] = get_requires_grad_argument(declaration)
env = {
'name': name,
'dispatch_name': 'dispatch_{}'.format(name),
'pycname': 'THPVariable_{}'.format(name),
'signatures': [],
'max_args': max(len(o['arguments']) + len(o['python_binding_arguments']) for o in declarations),
'unpack_self': [],
'dispatch': [],
}
if has_self:
env['unpack_self'] = [UNPACK_SELF]
grouped = group_declarations(declarations)
for i, dictionary in enumerate(grouped):
signature = dictionary['signature']
if has_self:
signature = signature.replace('Tensor self, ', '')
signature = signature.replace('Tensor self', '')
if not has_self:
# Use 'input' instead of 'self' for NN functions
signature = signature.replace('Tensor self', 'Tensor input')
signature = signature.replace('SparseTensor', 'Tensor')
if dictionary['base'].get('deprecated', False):
signature += '|deprecated'
env['signatures'].append('"{}",'.format(signature))
env['dispatch'].append(emit_dispatch(i, dictionary, env))
env['dispatch'].append('}')
if len(declarations) == 1 and len(declarations[0]['args']) == 1 and has_self:
tmpl = PY_VARIABLE_METHOD_NOARGS
env['actuals'] = ['self_']
env['flags'] = 'METH_NOARGS'
else:
tmpl = PY_VARIABLE_METHOD_VARARGS
env['flags'] = 'METH_VARARGS | METH_KEYWORDS'
if not is_module and not has_self:
env['flags'] += ' | METH_STATIC'
py_methods.append(tmpl.substitute(env))
py_method_defs.append(PY_VARIABLE_METHOD_DEF.substitute(env))
for name in sorted(python_functions.keys()):
process_function(name, python_functions[name])
return {
'py_methods': py_methods,
'py_method_defs': py_method_defs,
'py_method_dispatch': py_method_dispatch,
}
def group_declarations(declarations):
"""Returns a list of dictionaries containing the optional keys:
"base": the regular ATen declaration (e.g. conv2d)
"out": the out variant (e.g. conv2d_out)
"signature": the signature used for Python argument parsing
"""
grouped = defaultdict(dict)
# first group by signature ignoring out arguments
for declaration in declarations:
signature = get_python_signature(declaration, False)
v = grouped[signature]
if declaration['name'].endswith('_out'):
v['out'] = declaration
# prefer the signature with optional out=... arguments
v['signature'] = get_python_signature(declaration, True)
else:
v['base'] = declaration
if 'signature' not in v:
v['signature'] = signature
result = []
for _, dictionary in sorted(grouped.items()):
assert 'base' in dictionary
result.append(dictionary)
return result
def get_python_signature(declaration, include_out):
# Use the saved signature for deprecated pseudo-declarations
if 'python_signature' in declaration:
return declaration['python_signature']
# Compute the Python function signature for argument parsing
typed_args = []
output_args = []
positional = True
def get_typed_arg(arg):
typename = arg['simple_type']
if arg.get('is_nullable'):
typename = '{}?'.format(typename)
if arg.get('size') is not None:
typename = '{}[{}]'.format(typename, arg['size'])
param = typename + ' ' + arg['name']
default = None
if arg.get('default') is not None:
default = arg['default']
if default == 'nullptr' or default == '{}':
default = 'None'
if arg.get('python_default_init') is not None:
default = 'None'
if default is not None:
param += '=' + str(default)
return param
for arg in declaration['arguments']:
if arg.get('output', False):
output_args.append(arg)
continue
if arg.get('kwarg_only', False) and positional:
typed_args.append('*')
positional = False
param = get_typed_arg(arg)
typed_args.append(param)
# add output arguments
name = declaration['name']
if name.endswith('_out'):
name = name[:-4]
if len(output_args) > 0 and include_out:
assert declaration['name'].endswith('_out')
if positional:
typed_args.append('*')
positional = False
typenames = [arg['simple_type'] for arg in output_args]
if len(typenames) > 1:
typename = 'TensorList[{}]'.format(len(typenames))
else:
typename = typenames[0]
typed_args.append(typename + ' out=None')
# we could put this in the loop above but we want to ensure it is after the out argument
if len(declaration['python_binding_arguments']) > 0:
for arg in declaration['python_binding_arguments']:
if arg.get('kwarg_only', False) and positional:
typed_args.append('*')
positional = False
typed_args.append(get_typed_arg(arg))
# Python function signature.
# This is the string that we give to FunctionParameter, which is
# then parsed into the actual structure which we do parsing
# with.
return PYTHON_FUNCTION_SIGNATURE.substitute(name=name, typed_args=typed_args)