mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: GRU is different than LSTM that it only has hidden states but no cell states. So in this case, reusing the code of _LSTM is problematic, as we need to delete the part of creating cell state, and change many other places that use hard-coded 4 (hidden_all, hidden, cell_all, cell) into 2 (hidden_all, hidden). Otherwise GRU will break during the backward pass, when the optimizer tries to apply gradient to each of the parameters, because cell state is never used, so it does not have gradients for the corresponding parameters (i.e., cell_state_w, cell_state_b). Differential Revision: D5589309 fbshipit-source-id: f5af67dfe0842acd68223f6da3e96a81639e8049
335 lines
11 KiB
Python
335 lines
11 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import workspace, core, scope, gru_cell
|
|
from caffe2.python.model_helper import ModelHelper
|
|
from caffe2.python.rnn.rnn_cell_test_util import sigmoid, tanh, _prepare_rnn
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
from functools import partial
|
|
from hypothesis import given
|
|
from hypothesis import settings as ht_settings
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
|
|
def gru_unit(hidden_t_prev, gates_out_t,
|
|
seq_lengths, timestep, drop_states=False):
|
|
'''
|
|
Implements one GRU unit, for one time step
|
|
|
|
Shapes:
|
|
hidden_t_prev.shape = (1, N, D)
|
|
gates_out_t.shape = (1, N, G)
|
|
seq_lenths.shape = (N,)
|
|
'''
|
|
N = hidden_t_prev.shape[1]
|
|
D = hidden_t_prev.shape[2]
|
|
G = gates_out_t.shape[2]
|
|
t = (timestep * np.ones(shape=(N, D))).astype(np.int32)
|
|
assert t.shape == (N, D)
|
|
seq_lengths = (np.ones(shape=(N, D)) *
|
|
seq_lengths.reshape(N, 1)).astype(np.int32)
|
|
assert seq_lengths.shape == (N, D)
|
|
assert G == 3 * D
|
|
# Calculate reset, update, and output gates separately
|
|
# because output gate depends on reset gate.
|
|
gates_out_t = gates_out_t.reshape(N, 3, D)
|
|
reset_gate_t = gates_out_t[:, 0, :].reshape(N, D)
|
|
update_gate_t = gates_out_t[:, 1, :].reshape(N, D)
|
|
output_gate_t = gates_out_t[:, 2, :].reshape(N, D)
|
|
|
|
# Calculate gate outputs.
|
|
reset_gate_t = sigmoid(reset_gate_t)
|
|
update_gate_t = sigmoid(update_gate_t)
|
|
output_gate_t = tanh(output_gate_t)
|
|
|
|
valid = (t < seq_lengths).astype(np.int32)
|
|
assert valid.shape == (N, D)
|
|
hidden_t = update_gate_t * hidden_t_prev + \
|
|
(1 - update_gate_t) * output_gate_t
|
|
hidden_t = hidden_t * valid + hidden_t_prev * \
|
|
(1 - valid) * (1 - drop_states)
|
|
hidden_t = hidden_t.reshape(1, N, D)
|
|
|
|
return (hidden_t, )
|
|
|
|
|
|
def gru_reference(input, hidden_input,
|
|
reset_gate_w, reset_gate_b,
|
|
update_gate_w, update_gate_b,
|
|
output_gate_w, output_gate_b,
|
|
seq_lengths, drop_states=False):
|
|
D = hidden_input.shape[hidden_input.ndim - 1]
|
|
T = input.shape[0]
|
|
N = input.shape[1]
|
|
G = input.shape[2]
|
|
print("Dimensions: T= ", T, " N= ", N, " G= ", G, " D= ", D)
|
|
hidden = np.zeros(shape=(T + 1, N, D))
|
|
hidden[0, :, :] = hidden_input
|
|
|
|
for t in range(T):
|
|
input_t = input[t].reshape(1, N, G)
|
|
hidden_t_prev = hidden[t].reshape(1, N, D)
|
|
|
|
# Split input contributions for three gates.
|
|
input_t = input_t.reshape(N, 3, D)
|
|
input_reset = input_t[:, 0, :].reshape(N, D)
|
|
input_update = input_t[:, 1, :].reshape(N, D)
|
|
input_output = input_t[:, 2, :].reshape(N, D)
|
|
|
|
reset_gate = np.dot(hidden_t_prev, reset_gate_w.T) + reset_gate_b
|
|
reset_gate = reset_gate + input_reset
|
|
|
|
update_gate = np.dot(hidden_t_prev, update_gate_w.T) + update_gate_b
|
|
update_gate = update_gate + input_update
|
|
|
|
output_gate = np.dot(hidden_t_prev * sigmoid(reset_gate), output_gate_w.T) + \
|
|
output_gate_b
|
|
output_gate = output_gate + input_output
|
|
|
|
gates_out_t = np.concatenate(
|
|
(reset_gate, update_gate, output_gate),
|
|
axis=2,
|
|
)
|
|
print(reset_gate, update_gate, output_gate, gates_out_t, sep="\n")
|
|
|
|
(hidden_t, ) = gru_unit(
|
|
hidden_t_prev=hidden_t_prev,
|
|
gates_out_t=gates_out_t,
|
|
seq_lengths=seq_lengths,
|
|
timestep=t,
|
|
drop_states=drop_states,
|
|
)
|
|
hidden[t + 1] = hidden_t
|
|
|
|
return (
|
|
hidden[1:],
|
|
hidden[-1].reshape(1, N, D),
|
|
)
|
|
|
|
|
|
def gru_unit_op_input():
|
|
'''
|
|
Create input tensor where each dimension is from 1 to 4, ndim=3 and
|
|
last dimension size is a factor of 3
|
|
|
|
hidden_t_prev.shape = (1, N, D)
|
|
'''
|
|
dims_ = st.tuples(
|
|
st.integers(min_value=1, max_value=1), # 1, one timestep
|
|
st.integers(min_value=1, max_value=4), # n
|
|
st.integers(min_value=1, max_value=4), # d
|
|
)
|
|
|
|
def create_input(dims):
|
|
dims = list(dims)
|
|
dims[2] *= 3
|
|
return hu.arrays(dims)
|
|
|
|
return dims_.flatmap(create_input)
|
|
|
|
|
|
def gru_input():
|
|
'''
|
|
Create input tensor where each dimension is from 1 to 4, ndim=3 and
|
|
last dimension size is a factor of 3
|
|
'''
|
|
dims_ = st.tuples(
|
|
st.integers(min_value=1, max_value=4), # t
|
|
st.integers(min_value=1, max_value=4), # n
|
|
st.integers(min_value=1, max_value=4), # d
|
|
)
|
|
|
|
def create_input(dims):
|
|
dims = list(dims)
|
|
dims[2] *= 3
|
|
return hu.arrays(dims)
|
|
|
|
return dims_.flatmap(create_input)
|
|
|
|
|
|
def _prepare_gru_unit_op(gc, n, d, outputs_with_grads,
|
|
forward_only=False, drop_states=False,
|
|
two_d_initial_states=None):
|
|
print("Dims: (n,d) = ({},{})".format(n, d))
|
|
|
|
def generate_input_state(n, d):
|
|
if two_d_initial_states:
|
|
return np.random.randn(n, d).astype(np.float32)
|
|
else:
|
|
return np.random.randn(1, n, d).astype(np.float32)
|
|
|
|
model = ModelHelper(name='external')
|
|
|
|
with scope.NameScope("test_name_scope"):
|
|
hidden_t_prev, gates_t, seq_lengths, timestep = \
|
|
model.net.AddScopedExternalInputs(
|
|
"hidden_t_prev",
|
|
"gates_t",
|
|
'seq_lengths',
|
|
"timestep",
|
|
)
|
|
workspace.FeedBlob(
|
|
hidden_t_prev,
|
|
generate_input_state(n, d).astype(np.float32),
|
|
device_option=gc
|
|
)
|
|
workspace.FeedBlob(
|
|
gates_t,
|
|
generate_input_state(n, 3 * d).astype(np.float32),
|
|
device_option=gc
|
|
)
|
|
|
|
hidden_t = model.net.GRUUnit(
|
|
[
|
|
hidden_t_prev,
|
|
gates_t,
|
|
seq_lengths,
|
|
timestep,
|
|
],
|
|
['hidden_t'],
|
|
forget_bias=0.0,
|
|
drop_states=drop_states,
|
|
)
|
|
model.net.AddExternalOutputs(hidden_t)
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
|
|
# 10 is used as a magic number to simulate some reasonable timestep
|
|
# and generate some reasonable seq. lengths
|
|
workspace.FeedBlob(
|
|
seq_lengths,
|
|
np.random.randint(1, 10, size=(n,)).astype(np.int32),
|
|
device_option=gc
|
|
)
|
|
workspace.FeedBlob(
|
|
timestep,
|
|
np.random.randint(1, 10, size=(1,)).astype(np.int32),
|
|
device_option=core.DeviceOption(caffe2_pb2.CPU),
|
|
)
|
|
print("Feed {}".format(timestep))
|
|
|
|
return hidden_t, model.net
|
|
|
|
|
|
class GRUCellTest(hu.HypothesisTestCase):
|
|
|
|
# Test just for GRUUnitOp
|
|
@given(
|
|
input_tensor=gru_unit_op_input(),
|
|
fwd_only=st.booleans(),
|
|
drop_states=st.booleans(),
|
|
**hu.gcs
|
|
)
|
|
@ht_settings(max_examples=15)
|
|
def test_gru_unit_op(self, input_tensor, fwd_only, drop_states, gc, dc):
|
|
outputs_with_grads = [0]
|
|
ref = gru_unit
|
|
ref = partial(ref)
|
|
|
|
t, n, d = input_tensor.shape
|
|
assert d % 3 == 0
|
|
d = d // 3
|
|
ref = partial(ref, drop_states=drop_states)
|
|
|
|
with core.DeviceScope(gc):
|
|
net = _prepare_gru_unit_op(gc, n, d,
|
|
outputs_with_grads=outputs_with_grads,
|
|
forward_only=fwd_only,
|
|
drop_states=drop_states)[1]
|
|
# here we don't provide a real input for the net but just for one of
|
|
# its ops (RecurrentNetworkOp). So have to hardcode this name
|
|
workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
|
|
input_tensor,
|
|
device_option=gc)
|
|
print(str(net.Proto()))
|
|
op = net._net.op[-1]
|
|
inputs = [workspace.FetchBlob(name) for name in op.input]
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
inputs,
|
|
ref,
|
|
input_device_options={op.input[3]: hu.cpu_do},
|
|
outputs_to_check=[0],
|
|
)
|
|
|
|
# Checking for hidden_prev and gates gradients
|
|
if not fwd_only:
|
|
for param in range(2):
|
|
print("Check param {}".format(param))
|
|
self.assertGradientChecks(
|
|
device_option=gc,
|
|
op=op,
|
|
inputs=inputs,
|
|
outputs_to_check=param,
|
|
outputs_with_grads=outputs_with_grads,
|
|
threshold=0.0001,
|
|
stepsize=0.005,
|
|
input_device_options={op.input[3]: hu.cpu_do},
|
|
)
|
|
|
|
@given(
|
|
input_tensor=gru_input(),
|
|
fwd_only=st.booleans(),
|
|
drop_states=st.booleans(),
|
|
**hu.gcs
|
|
)
|
|
@ht_settings(max_examples=15)
|
|
def test_gru_main(self, **kwargs):
|
|
for outputs_with_grads in [[0], [1], [0, 1]]:
|
|
self.gru_base(gru_cell.GRU, gru_reference,
|
|
outputs_with_grads=outputs_with_grads,
|
|
**kwargs)
|
|
|
|
def gru_base(self, create_rnn, ref, outputs_with_grads,
|
|
input_tensor, fwd_only, drop_states, gc, dc):
|
|
print("GRU test parameters: ", locals())
|
|
t, n, d = input_tensor.shape
|
|
assert d % 3 == 0
|
|
d = d // 3
|
|
ref = partial(ref, drop_states=drop_states)
|
|
with core.DeviceScope(gc):
|
|
net = _prepare_rnn(t, n, d, create_rnn,
|
|
outputs_with_grads=outputs_with_grads,
|
|
memory_optim=False,
|
|
forget_bias=0.0,
|
|
forward_only=fwd_only,
|
|
drop_states=drop_states,
|
|
no_cell_state=True)[1]
|
|
# here we don't provide a real input for the net but just for one of
|
|
# its ops (RecurrentNetworkOp). So have to hardcode this name
|
|
workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
|
|
input_tensor,
|
|
device_option=gc)
|
|
op = net._net.op[-1]
|
|
inputs = [workspace.FetchBlob(name) for name in op.input]
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
inputs,
|
|
ref,
|
|
input_device_options={"timestep": hu.cpu_do},
|
|
outputs_to_check=list(range(2)),
|
|
)
|
|
|
|
# Checking for input, gates_t_w and gates_t_b gradients
|
|
if not fwd_only:
|
|
for param in range(2):
|
|
print("Check param {}".format(param))
|
|
self.assertGradientChecks(
|
|
device_option=gc,
|
|
op=op,
|
|
inputs=inputs,
|
|
outputs_to_check=param,
|
|
outputs_with_grads=outputs_with_grads,
|
|
threshold=0.001,
|
|
stepsize=0.005,
|
|
input_device_options={"timestep": hu.cpu_do},
|
|
)
|