mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/74309 Since the test file is large, it can be landed on its own and then switched on in the diff that actually builds lazy tensor code. Test Plan: verify CI passes Reviewed By: desertfire Differential Revision: D34928619 fbshipit-source-id: cd556155326f7fb55b3f29031f80bc36c936d565 (cherry picked from commit 60945adbefb6a8d19f89e330f8b344d076b13bfc)
69 lines
2.3 KiB
C++
69 lines
2.3 KiB
C++
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <torch/csrc/lazy/backend/backend_device.h>
|
|
#include <torch/csrc/lazy/core/debug_util.h>
|
|
#include <torch/csrc/lazy/core/ir.h>
|
|
#include <torch/csrc/lazy/core/tensor.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
|
|
namespace torch {
|
|
namespace lazy {
|
|
|
|
const std::unordered_set<std::string>* GetIgnoredCounters();
|
|
|
|
// Converts an at::Tensor(device=torch::kLazy) to at::Tensor(device=torch::kCPU)
|
|
// This at::Tensor can be torch::Tensor which is a Variable, or at::Tensor which
|
|
// know nothing about autograd. If the input tensor is already a CPU tensor, it
|
|
// will be returned. Needed because EqualValues and AllClose require CPU tensors
|
|
// on both sides.
|
|
at::Tensor ToCpuTensor(const at::Tensor& tensor);
|
|
|
|
// Helper function to copy a tensor to device.
|
|
torch::Tensor CopyToDevice(const torch::Tensor& tensor,
|
|
const torch::Device& device);
|
|
|
|
bool EqualValues(at::Tensor tensor1, at::Tensor tensor2);
|
|
|
|
bool EqualValuesNoElementTypeCheck(at::Tensor tensor1, at::Tensor tensor2);
|
|
|
|
bool CloseValues(at::Tensor tensor1, at::Tensor tensor2, double rtol = 1e-5,
|
|
double atol = 1e-8);
|
|
|
|
static inline void AllClose(at::Tensor tensor, at::Tensor xla_tensor,
|
|
double rtol = 1e-5, double atol = 1e-8) {
|
|
EXPECT_TRUE(CloseValues(tensor, xla_tensor, rtol, atol));
|
|
}
|
|
|
|
static inline void AllClose(at::Tensor tensor, torch::lazy::LazyTensor& xla_tensor,
|
|
double rtol = 1e-5, double atol = 1e-8) {
|
|
EXPECT_TRUE(
|
|
CloseValues(tensor, xla_tensor.ToTensor(/*detached=*/false), rtol, atol));
|
|
}
|
|
|
|
static inline void AllEqual(at::Tensor tensor, at::Tensor xla_tensor) {
|
|
EXPECT_TRUE(EqualValues(tensor, xla_tensor));
|
|
}
|
|
|
|
void ForEachDevice(const std::function<void(const torch::Device&)>& devfn);
|
|
|
|
std::string GetTensorTextGraph(at::Tensor tensor);
|
|
|
|
std::string GetTensorDotGraph(at::Tensor tensor);
|
|
|
|
std::string GetTensorHloGraph(at::Tensor tensor);
|
|
|
|
void TestBackward(
|
|
const std::vector<torch::Tensor>& inputs, const torch::Device& device,
|
|
const std::function<torch::Tensor(const std::vector<torch::Tensor>&)>&
|
|
testfn,
|
|
double rtol = 1e-5, double atol = 1e-8, int derivative_level = 1);
|
|
|
|
} // namespace lazy
|
|
} // namespace torch
|