mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27363 Test Plan: Imported from OSS Differential Revision: D17758907 Pulled By: zafartahirov fbshipit-source-id: f560f2726cf51ceebdbf22ebef2d067422340cf2
325 lines
14 KiB
Python
325 lines
14 KiB
Python
r""" Functional interface (quantized)."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import torch
|
|
from torch._jit_internal import List as _List
|
|
from torch.nn.modules.utils import _pair
|
|
|
|
# Although some of the functions and docstrings are mirrored from the torch.nn,
|
|
# we want to have them here for future changes.
|
|
|
|
def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None):
|
|
r"""
|
|
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
|
|
:math:`sH \times sW` steps. The number of output features is equal to the number of
|
|
input planes.
|
|
|
|
.. note:: The input quantization parameters propagate to the output.
|
|
|
|
See :class:`~torch.nn.quantized.AvgPool2d` for details and output shape.
|
|
|
|
Args:
|
|
input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
|
kernel_size: size of the pooling region. Can be a single number or a
|
|
tuple `(kH, kW)`
|
|
stride: stride of the pooling operation. Can be a single number or a
|
|
tuple `(sH, sW)`. Default: :attr:`kernel_size`
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple `(padH, padW)`. Default: 0
|
|
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
|
to compute the output shape. Default: ``False``
|
|
count_include_pad: when True, will include the zero-padding in the
|
|
averaging calculation. Default: ``True``
|
|
divisor_override: if specified, it will be used as divisor, otherwise
|
|
size of the pooling region will be used. Default: None
|
|
"""
|
|
if not input.is_quantized:
|
|
raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!")
|
|
return torch.nn.functional.avg_pool2d(input, kernel_size, stride, padding,
|
|
ceil_mode, count_include_pad,
|
|
divisor_override)
|
|
|
|
def adaptive_avg_pool2d(input, output_size):
|
|
# type: (Tensor, BroadcastingList2[int]) -> Tensor
|
|
r"""
|
|
Applies a 2D adaptive average pooling over a quantized input signal composed
|
|
of several quantized input planes.
|
|
|
|
.. note:: The input quantization paramteres propagate to the output.
|
|
|
|
See :class:`~torch.nn.quantized.AdaptiveAvgPool2d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer or
|
|
double-integer tuple)
|
|
"""
|
|
if not input.is_quantized:
|
|
raise ValueError("Input to 'quantized.adaptive_avg_pool2d' must be quantized!")
|
|
return torch.nn.functional.adaptive_avg_pool2d(input, output_size)
|
|
|
|
def conv2d(input, weight, bias,
|
|
stride=1, padding=0, dilation=1, groups=1,
|
|
padding_mode='zeros',
|
|
scale=1.0, zero_point=0,
|
|
dtype=torch.quint8):
|
|
r"""
|
|
Applies a 2D convolution over a quantized 2D input composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.quantized.Conv2d` for details and output shape.
|
|
|
|
Args:
|
|
input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
|
weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
|
|
bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple `(sH, sW)`. Default: 1
|
|
padding: implicit paddings on both sides of the input. Can be a
|
|
single number or a tuple `(padH, padW)`. Default: 0
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple `(dH, dW)`. Default: 1
|
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
|
number of groups. Default: 1
|
|
padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros"
|
|
scale: quantization scale for the output. Default: 1.0
|
|
zero_point: quantization zero_point for the output. Default: 0
|
|
dtype: quantization data type to use. Default: ``torch.quint8``
|
|
|
|
Examples::
|
|
|
|
>>> from torch.nn.quantized import functional as qF
|
|
>>> filters = torch.randn(8, 4, 3, 3, dtype=torch.float)
|
|
>>> inputs = torch.randn(1, 4, 5, 5, dtype=torch.float)
|
|
>>> bias = torch.randn(4, dtype=torch.float)
|
|
>>>
|
|
>>> scale, zero_point = 1.0, 0
|
|
>>> dtype = torch.quint8
|
|
>>>
|
|
>>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype)
|
|
>>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype)
|
|
>>> qF.conv2d(q_inputs, q_filters, bias, scale, zero_point, padding=1)
|
|
""" # noqa: E501
|
|
if padding_mode != 'zeros':
|
|
raise NotImplementedError("Only zero-padding is supported!")
|
|
if input.ndim != 4:
|
|
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
|
stride = _pair(stride)
|
|
padding = _pair(padding)
|
|
dilation = _pair(dilation)
|
|
|
|
prepacked_weight = torch.ops.quantized.conv_prepack(
|
|
weight, bias, stride, padding, dilation, groups)
|
|
return torch.ops.quantized.conv2d(input,
|
|
prepacked_weight,
|
|
stride, padding, dilation,
|
|
groups, scale, zero_point)
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
|
r"""Down/up samples the input to either the given :attr:`size` or the given
|
|
:attr:`scale_factor`
|
|
|
|
See :func:`torch.nn.functional.interpolate` for implementation details.
|
|
|
|
The input dimensions are interpreted in the form:
|
|
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
|
|
|
.. note:: The input quantization parameters propagate to the output.
|
|
|
|
.. note:: Only 2D input is supported for quantized inputs
|
|
|
|
.. note:: Only the following modes are supported for the quantized inputs:
|
|
|
|
- `bilinear`
|
|
- `nearest`
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
|
output spatial size.
|
|
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
|
|
mode (str): algorithm used for upsampling:
|
|
``'nearest'`` | ``'bilinear'``
|
|
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
|
input and output as squares rather than points.
|
|
If set to ``True``, the input and output tensors are aligned by the
|
|
center points of their corner pixels, preserving the values at the corner pixels.
|
|
If set to ``False``, the input and output tensors are aligned by the corner
|
|
points of their corner pixels, and the interpolation uses edge value padding
|
|
for out-of-boundary values, making this operation *independent* of input size
|
|
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
|
is ``'bilinear'``.
|
|
Default: ``False``
|
|
"""
|
|
if not input.is_quantized:
|
|
raise ValueError("Input to 'quantized.interpolate' must be quantized!")
|
|
return torch.nn.functional.interpolate(input, size, scale_factor, mode,
|
|
align_corners)
|
|
|
|
def linear(input, weight, bias=None, scale=None, zero_point=None):
|
|
# type: (Tensor, Tensor, Optional[Tensor]) -> Tensor
|
|
r"""
|
|
Applies a linear transformation to the incoming quantized data:
|
|
:math:`y = xA^T + b`.
|
|
See :class:`~torch.nn.quantized.Linear`
|
|
|
|
.. note::
|
|
|
|
Current implementation packs weights on every call, which has penalty on performance.
|
|
If you want to avoid the overhead, use :class:`~torch.nn.quantized.Linear`.
|
|
|
|
Args:
|
|
input (Tensor): Quantized input of type `torch.quint8`
|
|
weight (Tensor): Quantized weight of type `torch.qint8`
|
|
bias (Tensor): None or fp32 bias of type `torch.float`
|
|
scale (double): output scale. If None, derived from the input scale
|
|
zero_point (long): output zero point. If None, derived from the input zero_point
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *, in\_features)` where `*` means any number of
|
|
additional dimensions
|
|
- Weight: :math:`(out\_features, in\_features)`
|
|
- Bias: :math:`(out\_features)`
|
|
- Output: :math:`(N, *, out\_features)`
|
|
"""
|
|
if scale is None:
|
|
scale = input.q_scale()
|
|
if zero_point is None:
|
|
zero_point = input.q_zero_point()
|
|
_packed_params = torch.ops.quantized.linear_prepack(weight, bias)
|
|
return torch.ops.quantized.linear(input, _packed_params, scale, zero_point)
|
|
|
|
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False):
|
|
r"""Applies a 2D max pooling over a quantized input signal composed of
|
|
several quantized input planes.
|
|
|
|
.. note:: The input quantization parameters are propagated to the output.
|
|
|
|
See :class:`~torch.nn.quantized.MaxPool2d` for details.
|
|
"""
|
|
if return_indices:
|
|
raise NotImplementedError("return_indices is not yet implemented!")
|
|
if stride is None:
|
|
stride = torch.jit.annotate(_List[int], [])
|
|
return torch.nn.functional.max_pool2d(input, kernel_size, stride, padding,
|
|
dilation, ceil_mode, return_indices)
|
|
|
|
def relu(input, inplace=False):
|
|
# type: (Tensor, bool) -> Tensor
|
|
r"""relu(input, inplace=False) -> Tensor
|
|
|
|
Applies the rectified linear unit function element-wise.
|
|
See :class:`~torch.nn.quantized.ReLU` for more details.
|
|
|
|
Args:
|
|
input: quantized input
|
|
inplace: perform the computation inplace
|
|
"""
|
|
if not input.is_quantized:
|
|
raise ValueError("Input to 'quantized.relu' must be quantized!")
|
|
if inplace:
|
|
return torch.relu_(input)
|
|
else:
|
|
return torch.relu(input)
|
|
|
|
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
|
r"""Upsamples the input to either the given :attr:`size` or the given
|
|
:attr:`scale_factor`
|
|
|
|
.. warning::
|
|
This function is deprecated in favor of
|
|
:func:`torch.nn.quantized.functional.interpolate`.
|
|
This is equivalent with ``nn.quantized.functional.interpolate(...)``.
|
|
|
|
See :func:`torch.nn.functional.interpolate` for implementation details.
|
|
|
|
The input dimensions are interpreted in the form:
|
|
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
|
|
|
.. note:: The input quantization parameters propagate to the output.
|
|
|
|
.. note:: Only 2D input is supported for quantized inputs
|
|
|
|
.. note:: Only the following modes are supported for the quantized inputs:
|
|
|
|
- `bilinear`
|
|
- `nearest`
|
|
|
|
Args:
|
|
input (Tensor): quantized input tensor
|
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
|
output spatial size.
|
|
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to be an integer.
|
|
mode (string): algorithm used for upsampling:
|
|
``'nearest'`` | ``'bilinear'``
|
|
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
|
input and output as squares rather than points.
|
|
If set to ``True``, the input and output tensors are aligned by the
|
|
center points of their corner pixels, preserving the values at the corner pixels.
|
|
If set to ``False``, the input and output tensors are aligned by the corner
|
|
points of their corner pixels, and the interpolation uses edge value padding
|
|
for out-of-boundary values, making this operation *independent* of input size
|
|
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
|
is ``'bilinear'``.
|
|
Default: ``False``
|
|
|
|
.. warning::
|
|
With ``align_corners = True``, the linearly interpolating modes
|
|
(`bilinear`) don't proportionally align the
|
|
output and input pixels, and thus the output values can depend on the
|
|
input size. This was the default behavior for these modes up to version
|
|
0.3.1. Since then, the default behavior is ``align_corners = False``.
|
|
See :class:`~torch.nn.Upsample` for concrete examples on how this
|
|
affects the outputs.
|
|
"""
|
|
warnings.warn("nn.quantized.functional.upsample is deprecated. Use nn.quantized.functional.interpolate instead.")
|
|
return interpolate(input, size, scale_factor, mode, align_corners)
|
|
|
|
def upsample_bilinear(input, size=None, scale_factor=None):
|
|
r"""Upsamples the input, using bilinear upsampling.
|
|
|
|
.. warning::
|
|
This function is deprecated in favor of
|
|
:func:`torch.nn.quantized.functional.interpolate`.
|
|
This is equivalent with
|
|
``nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)``.
|
|
|
|
.. note:: The input quantization parameters propagate to the output.
|
|
|
|
.. note:: Only 2D inputs are supported
|
|
|
|
Args:
|
|
input (Tensor): quantized input
|
|
size (int or Tuple[int, int]): output spatial size.
|
|
scale_factor (int or Tuple[int, int]): multiplier for spatial size
|
|
"""
|
|
# DeprecationWarning is ignored by default
|
|
warnings.warn("nn.quantized.functional.upsample_bilinear is deprecated. Use nn.quantized.functional.interpolate instead.")
|
|
return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True)
|
|
|
|
def upsample_nearest(input, size=None, scale_factor=None):
|
|
r"""Upsamples the input, using nearest neighbours' pixel values.
|
|
|
|
.. warning::
|
|
This function is deprecated in favor of
|
|
:func:`torch.nn.quantized.functional.interpolate`.
|
|
This is equivalent with ``nn.quantized.functional.interpolate(..., mode='nearest')``.
|
|
|
|
.. note:: The input quantization parameters propagate to the output.
|
|
|
|
.. note:: Only 2D inputs are supported
|
|
|
|
Args:
|
|
input (Tensor): quantized input
|
|
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial
|
|
size.
|
|
scale_factor (int): multiplier for spatial size. Has to be an integer.
|
|
"""
|
|
# DeprecationWarning is ignored by default
|
|
warnings.warn("nn.quantized.functional.upsample_nearest is deprecated. Use nn.quantized.functional.interpolate instead.")
|
|
return interpolate(input, size, scale_factor, mode='nearest')
|