pytorch/torch/_C/_nn.pyi.in

72 lines
1.9 KiB
Python

# ${generated_comment}
# mypy: disable-error-code="type-arg"
from collections.abc import Sequence
from typing import Literal, overload
from torch import memory_format, Tensor
from torch.types import _bool, _device, _dtype, _int, _size
# Defined in tools/autograd/templates/python_nn_functions.cpp
${c_nn_function_hints}
# Defined in aten/src/ATen/native/mkldnn/Linear.cpp
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Tensor | None) -> Tensor: ...
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
def mkldnn_reorder_conv2d_weight(
self: Tensor,
padding: list,
stride: list,
dilatation: list,
groups: int,
) -> Tensor: ...
def mkldnn_reorder_conv3d_weight(
self: Tensor,
padding: list,
stride: list,
dilatation: list,
groups: int,
) -> Tensor: ...
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
# Defined at tools/autograd/templates/python_nn_functions.cpp
@overload
def _parse_to(
device: _device,
dtype: _dtype,
non_blocking: _bool,
copy: _bool,
*,
memory_format: memory_format,
) -> tuple[_device, _dtype, _bool, memory_format]: ...
@overload
def _parse_to(
dtype: _dtype,
non_blocking: _bool,
copy: _bool,
*,
memory_format: memory_format,
) -> tuple[_device, _dtype, _bool, memory_format]: ...
@overload
def _parse_to(
tensor: Tensor,
non_blocking: _bool,
copy: _bool,
*,
memory_format: memory_format,
) -> tuple[_device, _dtype, _bool, memory_format]: ...
# Defined in aten/src/ATen/native/PackedSequence.cpp
def pad_sequence(
sequences: list[Tensor] | tuple[Tensor, ...],
batch_first: bool = False,
padding_value: float = 0.0,
padding_side: Literal["left", "right"] = "right",
) -> Tensor: ...
def flatten_dense_tensors(tensors: list[Tensor]) -> Tensor: ...
def unflatten_dense_tensors(flat: Tensor, tensors: list[Tensor]) -> list[Tensor]: ...