mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.  ezyang apaszke Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198 Differential Revision: D13468797 Pulled By: goldsborough fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
267 lines
8.9 KiB
C++
267 lines
8.9 KiB
C++
#pragma once
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/script/error_report.h>
|
|
#include <torch/csrc/jit/script/tree_views.h>
|
|
#include <torch/csrc/jit/script/module.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
static inline std::vector<Value*> toValues(Graph& g, at::ArrayRef<NamedValue> nvs) {
|
|
return fmap(nvs, [&](const NamedValue& v) {
|
|
return v.value(g);
|
|
});
|
|
}
|
|
|
|
// The AST can contain nodes like `self`, `self.b` or `python_fn` that
|
|
// are not first-class values in the graph representation, but instead
|
|
// will be desugared based on how they are used in the AST.
|
|
|
|
// SugaredValue is used to temporarily represent these values in a way
|
|
// that separates their behavior from the AST -> IR converter itself.
|
|
// This allows us to keep dependencies on python minimal.
|
|
|
|
enum NoneStatus {
|
|
ALWAYS,
|
|
MAYBE,
|
|
NEVER
|
|
};
|
|
|
|
struct SugaredValue : public std::enable_shared_from_this<SugaredValue> {
|
|
// what is this node? for error reporting (e.g. Module, python function)
|
|
virtual std::string kind() const = 0;
|
|
|
|
// what can we do with this thing?
|
|
// use it as a value e.g. `this + 4`
|
|
virtual Value * asValue(const SourceRange& loc, Method & m) {
|
|
throw ErrorReport(loc) << kind() << " cannot be used as a value";
|
|
}
|
|
|
|
// select an attribute on it, e.g. `this.field`
|
|
virtual std::shared_ptr<SugaredValue> attr(const SourceRange& loc, Method & m, const std::string& field) {
|
|
throw ErrorReport(loc) << "attribute lookup is not defined on " << kind();
|
|
}
|
|
virtual NoneStatus isNone() {
|
|
return NEVER;
|
|
}
|
|
|
|
// use it as a vector of values, e.g. a tuple of values as return value from
|
|
// a method invocation
|
|
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(
|
|
const SourceRange& loc,
|
|
Method& m,
|
|
const c10::optional<size_t>& size_hint = {}) {
|
|
throw ErrorReport(loc) << kind() << " cannot be used as a tuple";
|
|
}
|
|
|
|
// call it like a function, e.g. `outputs = this(inputs)`
|
|
virtual std::shared_ptr<SugaredValue> call(
|
|
const SourceRange& loc,
|
|
Method & m,
|
|
// note: names for args will be 'argument 0', 'argument 1', etc..
|
|
at::ArrayRef<NamedValue> inputs_,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
// n_binders is always set to the number of variables an expression is
|
|
// syntactically bound to:
|
|
// a = foo() # 1 binder (note in this case the single binder might be a tuple)
|
|
// a, * b = foo() # 1 binder
|
|
// a, b = foo() # 2 binders
|
|
// foo() # 0 binders
|
|
//
|
|
// In subexpressions, like bar() in foo(bar()), n_binders is always set to
|
|
// 1. n_binders is used as a hint to subexpressions to determine how many
|
|
// values they should return when that number is ambiguous statically. In
|
|
// particular it is currently used to decide how many tensors a call to a
|
|
// python function will return. It is only a hint, functions do not have to
|
|
// check that n_binders match the number of things they are returning, the
|
|
// assignment logic will do that anyway.
|
|
|
|
throw ErrorReport(loc) << "cannot call a " << kind();
|
|
}
|
|
|
|
virtual ~SugaredValue() = default;
|
|
};
|
|
|
|
// most things in the environment are just simple value types
|
|
// and not special python syntax sugar types
|
|
struct TORCH_API SimpleValue : public SugaredValue {
|
|
SimpleValue(Value * value)
|
|
: value(value) {}
|
|
std::string kind() const override {
|
|
return "value";
|
|
}
|
|
Value * asValue(const SourceRange& range, Method & m) override {
|
|
return value;
|
|
}
|
|
NoneStatus isNone() override {
|
|
if (value->mustBeNone())
|
|
return ALWAYS;
|
|
else if (value->type()->cast<OptionalType>())
|
|
return MAYBE;
|
|
else
|
|
return NEVER;
|
|
}
|
|
std::vector<std::shared_ptr<SugaredValue>> asTuple(
|
|
const SourceRange& loc,
|
|
Method& m,
|
|
const c10::optional<size_t>& size_hint = {}) override;
|
|
std::shared_ptr<SugaredValue> attr(const SourceRange& loc, Method & m, const std::string& field) override;
|
|
Value* getValue() const {
|
|
return value;
|
|
}
|
|
private:
|
|
Value* value;
|
|
};
|
|
|
|
struct TORCH_API BuiltinFunction : public SugaredValue {
|
|
BuiltinFunction(Symbol symbol, c10::optional<NamedValue> self)
|
|
: symbol(symbol), self(std::move(self)) {}
|
|
|
|
// The symbol of the function (e.g. `aten::relu`).
|
|
Symbol symbol;
|
|
|
|
// if this is method, then this is the self argument.
|
|
c10::optional<NamedValue> self;
|
|
|
|
std::string kind() const override {
|
|
return "builtin";
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
const SourceRange& loc,
|
|
Method& m,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
size_t n_binders) override;
|
|
};
|
|
|
|
struct TORCH_API BuiltinModule : public SugaredValue {
|
|
BuiltinModule(std::string name,
|
|
c10::optional<int64_t> version = at::nullopt)
|
|
: name(std::move(name))
|
|
, version(std::move(version)) {}
|
|
|
|
std::string kind() const override {
|
|
return "builtin module";
|
|
}
|
|
std::shared_ptr<SugaredValue> attr(const SourceRange& loc, Method & m, const std::string& field) override {
|
|
return std::make_shared<BuiltinFunction>(Symbol::fromQualString(name+"::"+field), c10::nullopt);
|
|
}
|
|
|
|
private:
|
|
std::string name;
|
|
// when we add operator versioning, emit this op as it exising at 'version'
|
|
// if not set, use the latest version
|
|
c10::optional<int64_t> version;
|
|
};
|
|
|
|
// These SugaredValues have special handling in the compiler because they
|
|
// change the normal evalution order of the expression they participate in.
|
|
// They are exposed here so that the python frontend can inject them
|
|
// when it sees the equivalent thing in python
|
|
struct TORCH_API ForkValue : public SugaredValue {
|
|
ForkValue() = default;
|
|
std::string kind() const override {
|
|
return "fork";
|
|
}
|
|
};
|
|
struct TORCH_API AnnotateValue : public SugaredValue {
|
|
AnnotateValue() = default;
|
|
std::string kind() const override {
|
|
return "annotate";
|
|
}
|
|
};
|
|
|
|
using Resolver = std::function<std::shared_ptr<SugaredValue>(const std::string& name, Method& m, const SourceRange& loc)>;
|
|
|
|
inline std::shared_ptr<SugaredValue> nativeResolver(const std::string& name, Method& m, const SourceRange& loc){
|
|
if (name == "torch") {
|
|
return std::make_shared<BuiltinModule>("aten");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TORCH_API void defineMethodsInModule(
|
|
const std::shared_ptr<Module>& m,
|
|
const std::vector<Def>& definitions,
|
|
const std::vector<Resolver>& resolvers, /* determines how we handle free variables in each definition*/
|
|
const std::shared_ptr<SugaredValue>& self /* if non-null, the first argument to each def, is bound to this value */
|
|
);
|
|
|
|
// same as above but parse the definitions from source
|
|
TORCH_API void defineMethodsInModule(std::shared_ptr<Module> m, const std::string& source, const Resolver& resolver, const std::shared_ptr<SugaredValue>& self);
|
|
|
|
// pack outputs of a function following python rules. If there is a single value return
|
|
// a SimpleValue, otherwise pack all the values into a Tuple.
|
|
TORCH_API Value* packOutputs(Graph& g, at::ArrayRef<Value*> values);
|
|
TORCH_API std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs);
|
|
|
|
// defines how a method obtained from a module behaves in script
|
|
struct MethodValue : public SugaredValue {
|
|
MethodValue(std::shared_ptr<Module> module, Method& method)
|
|
: module(std::move(module)) //insurance that method stays alive
|
|
, method(method) {}
|
|
std::string kind() const override {
|
|
return "method";
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
const SourceRange& loc,
|
|
Method& caller,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) override {
|
|
return std::make_shared<SimpleValue>(packOutputs(
|
|
*caller.graph(), caller.emit_call_to(loc, method, inputs, attributes)));
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<Module> module;
|
|
Method& method;
|
|
|
|
};
|
|
|
|
// try to match a list if inputs and keyword 'attributes' to this schema,
|
|
// if it works return the flat list of positional inputs to the call
|
|
// if it returns nullopt, then failure_messages contains a good error report
|
|
// set convert_tensor_to_num to true if ImplicitTensorToNums should be inserted to
|
|
// match the schema
|
|
|
|
struct MatchedSchema {
|
|
std::vector<Value*> inputs;
|
|
std::vector<TypePtr> return_types;
|
|
};
|
|
|
|
TORCH_API c10::optional<MatchedSchema> tryMatchSchema(
|
|
const FunctionSchema& schema,
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
c10::optional<NamedValue> self,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
std::ostream& failure_messages,
|
|
bool allow_conversions);
|
|
|
|
TORCH_API Value* emitBuiltinCall(
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
Symbol name,
|
|
const c10::optional<NamedValue>& self,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
|
|
// otherwise it will return nullptr if the builtin is not found.
|
|
bool required);
|
|
|
|
TORCH_API c10::optional<size_t> findInputWithName(
|
|
const std::string& name,
|
|
at::ArrayRef<NamedValue> kwargs);
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|