pytorch/test/cpp/jit/test_interface.cpp
Zachary DeVito 796363147f Implement more of of the nn.Module API (#28828)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28828

This updates torch::script::Module to more closely match the behavior
of nn.Module. In particular, it implements the (optionally recurisive)
iterators that retrieve submodules, parameters, and buffers and makes
their names match the python versions.

This also removes the individual accessors for Parameter, Module, Buffer, etc.
and replaces them with a single `attr` function which is equivalent to
writing `a.foo` in Python (`setattr` emulates `a.foo = v`).
As we build out the user-facing API for TorchScript values this will end
up matching how an  attribute is accessed on general objects.

This PR preservers the python bindings for script::Module by emulating the
old API at the binding level. A followup will clean up the usage to more
directly match the C++ API.

Test Plan: Imported from OSS

Differential Revision: D18197611

Pulled By: zdevito

fbshipit-source-id: 7ee4dcbb258605d1c988314b05d938423f1ccee5
2019-11-06 22:58:25 -08:00

82 lines
2.2 KiB
C++

#include <test/cpp/jit/test_base.h>
#include <test/cpp/jit/test_utils.h>
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/import_source.h>
#include <torch/csrc/jit/script/resolver.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
using namespace torch::jit::script;
static const std::vector<std::string> subMethodSrcs = {R"JIT(
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x + y + 1
def forward(self, x: Tensor) -> Tensor:
return x
)JIT"};
static const auto parentForward = R"JIT(
def forward(self, x: Tensor) -> Tensor:
return self.subMod.forward(x)
)JIT";
static const auto moduleInterfaceSrc = R"JIT(
class OneForward(ModuleInterface):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def forward(self, x: Tensor) -> Tensor:
pass
)JIT";
static void import_libs(
std::shared_ptr<CompilationUnit> cu,
const std::string& class_name,
const std::shared_ptr<Source>& src,
const std::vector<at::Tensor>& tensor_table) {
SourceImporter si(
cu,
&tensor_table,
[&](const std::string& name) -> std::shared_ptr<Source> { return src; },
/*version=*/2);
si.loadNamedType(QualifiedName(class_name));
}
void testModuleInterfaceSerialization() {
auto cu = std::make_shared<CompilationUnit>();
Module parentMod("parentMod", cu);
Module subMod("subMod", cu);
std::vector<at::Tensor> constantTable;
import_libs(
cu,
"__torch__.OneForward",
std::make_shared<Source>(moduleInterfaceSrc),
constantTable);
for (const std::string& method : subMethodSrcs) {
subMod.define(method, nativeResolver());
}
parentMod.register_attribute(
"subMod",
cu->get_interface("__torch__.OneForward"),
subMod.module_object(),
/*is_parameter=*/false);
parentMod.define(parentForward, nativeResolver());
ASSERT_TRUE(parentMod.hasattr("subMod"));
std::stringstream ss;
parentMod.save(ss);
Module reloaded_mod = jit::load(ss);
ASSERT_TRUE(reloaded_mod.hasattr("subMod"));
InterfaceTypePtr submodType =
reloaded_mod.type()->getAttribute("subMod")->cast<InterfaceType>();
ASSERT_TRUE(submodType->is_module());
}
} // namespace jit
} // namespace torch