mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: A couple fixes I deem necessary to the TorchScript C++ API after writing the tutorial: 1. When I was creating the custom op API, I created `torch/op.h` as the one-stop header for creating custom ops. I now notice that there is no good header for the TorchScript C++ story altogether, i.e. when you just want to load a script module in C++ without any custom ops necessarily. The `torch/op.h` header suits that purpose just as well of course, but I think we should rename it to `torch/script.h`, which seems like a great name for this feature. 2. The current API for the CMake we provided was that we defined a bunch of variables like `TORCH_LIBRARY_DIRS` and `TORCH_INCLUDES` and then expected users to add those variables to their targets. We also had a CMake function that did that for you automatically. I now realized a much smarter way of doing this is to create an `IMPORTED` target for the libtorch library in CMake, and then add all this stuff to the link interface of that target. Then all downstream users have to do is `target_link_libraries(my_target torch)` and they get all the proper includes, libraries and compiler flags added to their target. This means we can get rid of the CMake function and all that stuff. orionr AFAIK this is a much, much better way of doing all of this, no? 3. Since we distribute libtorch with `D_GLIBCXX_USE_CXX11_ABI=0`, dependent libraries must set this flag too. I now add this to the interface compile options of this imported target. 4. Fixes to JIT docs. These could likely be 4 different PRs but given the release I wouldn't mind landing them all asap. zdevito dzhulgakov soumith Pull Request resolved: https://github.com/pytorch/pytorch/pull/11682 Differential Revision: D9839431 Pulled By: goldsborough fbshipit-source-id: fdc47b95f83f22d53e1995aa683e09613b4bfe65
951 lines
36 KiB
Python
951 lines
36 KiB
Python
import copy
|
|
import glob
|
|
import imp
|
|
import os
|
|
import re
|
|
import setuptools
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import tempfile
|
|
import warnings
|
|
|
|
import torch
|
|
from .file_baton import FileBaton
|
|
|
|
from setuptools.command.build_ext import build_ext
|
|
|
|
|
|
def _find_cuda_home():
|
|
'''Finds the CUDA install path.'''
|
|
# Guess #1
|
|
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
|
if cuda_home is None:
|
|
# Guess #2
|
|
if sys.platform == 'win32':
|
|
cuda_homes = glob.glob(
|
|
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
|
|
if len(cuda_homes) == 0:
|
|
cuda_home = ''
|
|
else:
|
|
cuda_home = cuda_homes[0]
|
|
else:
|
|
cuda_home = '/usr/local/cuda'
|
|
if not os.path.exists(cuda_home):
|
|
# Guess #3
|
|
try:
|
|
which = 'where' if sys.platform == 'win32' else 'which'
|
|
nvcc = subprocess.check_output(
|
|
[which, 'nvcc']).decode().rstrip('\r\n')
|
|
cuda_home = os.path.dirname(os.path.dirname(nvcc))
|
|
except Exception:
|
|
cuda_home = None
|
|
if cuda_home and not torch.cuda.is_available():
|
|
print("No CUDA runtime is found, using CUDA_HOME='{}'".format(cuda_home))
|
|
return cuda_home
|
|
|
|
|
|
MINIMUM_GCC_VERSION = (4, 9)
|
|
MINIMUM_MSVC_VERSION = (19, 0, 24215)
|
|
ABI_INCOMPATIBILITY_WARNING = '''
|
|
|
|
!! WARNING !!
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
Your compiler ({}) may be ABI-incompatible with PyTorch!
|
|
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
|
|
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.
|
|
|
|
See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6
|
|
for instructions on how to install GCC 4.9 or higher.
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
!! WARNING !!
|
|
'''
|
|
CUDA_HOME = _find_cuda_home()
|
|
CUDNN_HOME = os.environ.get('CUDNN_HOME') or os.environ.get('CUDNN_PATH')
|
|
# PyTorch releases have the version pattern major.minor.patch, whereas when
|
|
# PyTorch is built from source, we append the git commit hash, which gives
|
|
# it the below pattern.
|
|
BUILT_FROM_SOURCE_VERSION_PATTERN = re.compile(r'\d+\.\d+\.\d+\w+\+\w+')
|
|
|
|
COMMON_NVCC_FLAGS = [
|
|
'-D__CUDA_NO_HALF_OPERATORS__',
|
|
'-D__CUDA_NO_HALF_CONVERSIONS__',
|
|
'-D__CUDA_NO_HALF2_OPERATORS__',
|
|
]
|
|
|
|
|
|
def is_binary_build():
|
|
return not BUILT_FROM_SOURCE_VERSION_PATTERN.match(torch.version.__version__)
|
|
|
|
|
|
def check_compiler_abi_compatibility(compiler):
|
|
'''
|
|
Verifies that the given compiler is ABI-compatible with PyTorch.
|
|
|
|
Arguments:
|
|
compiler (str): The compiler executable name to check (e.g. ``g++``).
|
|
Must be executable in a shell process.
|
|
|
|
Returns:
|
|
False if the compiler is (likely) ABI-incompatible with PyTorch,
|
|
else True.
|
|
'''
|
|
if not is_binary_build():
|
|
return True
|
|
try:
|
|
check_cmd = '{}' if sys.platform == 'win32' else '{} --version'
|
|
info = subprocess.check_output(
|
|
check_cmd.format(compiler).split(), stderr=subprocess.STDOUT)
|
|
except Exception:
|
|
_, error, _ = sys.exc_info()
|
|
warnings.warn('Error checking compiler version: {}'.format(error))
|
|
else:
|
|
info = info.decode().lower()
|
|
if 'gcc' in info or 'g++' in info:
|
|
# Sometimes the version is given as "major.x" instead of semver.
|
|
version = re.search(r'(\d+)\.(\d+|x)', info)
|
|
if version is not None:
|
|
major, minor = version.groups()
|
|
minor = 0 if minor == 'x' else int(minor)
|
|
if (int(major), minor) >= MINIMUM_GCC_VERSION:
|
|
return True
|
|
else:
|
|
# Append the detected version for the warning.
|
|
compiler = '{} {}'.format(compiler, version.group(0))
|
|
elif 'Microsoft' in info:
|
|
info = info.decode().lower()
|
|
version = re.search(r'(\d+)\.(\d+)\.(\d+)', info)
|
|
if version is not None:
|
|
major, minor, revision = version.groups()
|
|
if (int(major), int(minor),
|
|
int(revision)) >= MINIMUM_MSVC_VERSION:
|
|
return True
|
|
else:
|
|
# Append the detected version for the warning.
|
|
compiler = '{} {}'.format(compiler, version.group(0))
|
|
|
|
warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
|
|
return False
|
|
|
|
|
|
class BuildExtension(build_ext):
|
|
'''
|
|
A custom :mod:`setuptools` build extension .
|
|
|
|
This :class:`setuptools.build_ext` subclass takes care of passing the
|
|
minimum required compiler flags (e.g. ``-std=c++11``) as well as mixed
|
|
C++/CUDA compilation (and support for CUDA files in general).
|
|
|
|
When using :class:`BuildExtension`, it is allowed to supply a dictionary
|
|
for ``extra_compile_args`` (rather than the usual list) that maps from
|
|
languages (``cxx`` or ``cuda``) to a list of additional compiler flags to
|
|
supply to the compiler. This makes it possible to supply different flags to
|
|
the C++ and CUDA compiler during mixed compilation.
|
|
'''
|
|
|
|
def build_extensions(self):
|
|
self._check_abi()
|
|
for extension in self.extensions:
|
|
self._define_torch_extension_name(extension)
|
|
self._add_gnu_abi_flag_if_binary(extension)
|
|
|
|
# Register .cu and .cuh as valid source extensions.
|
|
self.compiler.src_extensions += ['.cu', '.cuh']
|
|
# Save the original _compile method for later.
|
|
if self.compiler.compiler_type == 'msvc':
|
|
self.compiler._cpp_extensions += ['.cu', '.cuh']
|
|
original_compile = self.compiler.compile
|
|
original_spawn = self.compiler.spawn
|
|
else:
|
|
original_compile = self.compiler._compile
|
|
|
|
def unix_wrap_compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
|
|
# Copy before we make any modifications.
|
|
cflags = copy.deepcopy(extra_postargs)
|
|
try:
|
|
original_compiler = self.compiler.compiler_so
|
|
if _is_cuda_file(src):
|
|
nvcc = _join_cuda_home('bin', 'nvcc')
|
|
self.compiler.set_executable('compiler_so', nvcc)
|
|
if isinstance(cflags, dict):
|
|
cflags = cflags['nvcc']
|
|
cflags = COMMON_NVCC_FLAGS + ['--compiler-options', "'-fPIC'"] + cflags
|
|
elif isinstance(cflags, dict):
|
|
cflags = cflags['cxx']
|
|
# NVCC does not allow multiple -std to be passed, so we avoid
|
|
# overriding the option if the user explicitly passed it.
|
|
if not any(flag.startswith('-std=') for flag in cflags):
|
|
cflags.append('-std=c++11')
|
|
|
|
original_compile(obj, src, ext, cc_args, cflags, pp_opts)
|
|
finally:
|
|
# Put the original compiler back in place.
|
|
self.compiler.set_executable('compiler_so', original_compiler)
|
|
|
|
def win_wrap_compile(sources,
|
|
output_dir=None,
|
|
macros=None,
|
|
include_dirs=None,
|
|
debug=0,
|
|
extra_preargs=None,
|
|
extra_postargs=None,
|
|
depends=None):
|
|
|
|
self.cflags = copy.deepcopy(extra_postargs)
|
|
extra_postargs = None
|
|
|
|
def spawn(cmd):
|
|
orig_cmd = cmd
|
|
# Using regex to match src, obj and include files
|
|
|
|
src_regex = re.compile('/T(p|c)(.*)')
|
|
src_list = [
|
|
m.group(2) for m in (src_regex.match(elem) for elem in cmd)
|
|
if m
|
|
]
|
|
|
|
obj_regex = re.compile('/Fo(.*)')
|
|
obj_list = [
|
|
m.group(1) for m in (obj_regex.match(elem) for elem in cmd)
|
|
if m
|
|
]
|
|
|
|
include_regex = re.compile(r'((\-|\/)I.*)')
|
|
include_list = [
|
|
m.group(1)
|
|
for m in (include_regex.match(elem) for elem in cmd) if m
|
|
]
|
|
|
|
if len(src_list) >= 1 and len(obj_list) >= 1:
|
|
src = src_list[0]
|
|
obj = obj_list[0]
|
|
if _is_cuda_file(src):
|
|
nvcc = _join_cuda_home('bin', 'nvcc')
|
|
if isinstance(self.cflags, dict):
|
|
cflags = self.cflags['nvcc']
|
|
elif isinstance(self.cflags, list):
|
|
cflags = self.cflags
|
|
else:
|
|
cflags = []
|
|
cmd = [
|
|
nvcc, '-c', src, '-o', obj, '-Xcompiler',
|
|
'/wd4819', '-Xcompiler', '/MD'
|
|
] + include_list + cflags
|
|
elif isinstance(self.cflags, dict):
|
|
cflags = self.cflags['cxx']
|
|
cmd += cflags
|
|
elif isinstance(self.cflags, list):
|
|
cflags = self.cflags
|
|
cmd += cflags
|
|
|
|
return original_spawn(cmd)
|
|
|
|
try:
|
|
self.compiler.spawn = spawn
|
|
return original_compile(sources, output_dir, macros,
|
|
include_dirs, debug, extra_preargs,
|
|
extra_postargs, depends)
|
|
finally:
|
|
self.compiler.spawn = original_spawn
|
|
|
|
# Monkey-patch the _compile method.
|
|
if self.compiler.compiler_type == 'msvc':
|
|
self.compiler.compile = win_wrap_compile
|
|
else:
|
|
self.compiler._compile = unix_wrap_compile
|
|
|
|
build_ext.build_extensions(self)
|
|
|
|
def _check_abi(self):
|
|
# On some platforms, like Windows, compiler_cxx is not available.
|
|
if hasattr(self.compiler, 'compiler_cxx'):
|
|
compiler = self.compiler.compiler_cxx[0]
|
|
elif sys.platform == 'win32':
|
|
compiler = os.environ.get('CXX', 'cl')
|
|
else:
|
|
compiler = os.environ.get('CXX', 'c++')
|
|
check_compiler_abi_compatibility(compiler)
|
|
|
|
def _define_torch_extension_name(self, extension):
|
|
# pybind11 doesn't support dots in the names
|
|
# so in order to support extensions in the packages
|
|
# like torch._C, we take the last part of the string
|
|
# as the library name
|
|
names = extension.name.split('.')
|
|
name = names[-1]
|
|
define = '-DTORCH_EXTENSION_NAME={}'.format(name)
|
|
if isinstance(extension.extra_compile_args, dict):
|
|
for args in extension.extra_compile_args.values():
|
|
args.append(define)
|
|
else:
|
|
extension.extra_compile_args.append(define)
|
|
|
|
def _add_gnu_abi_flag_if_binary(self, extension):
|
|
# If the version string looks like a binary build,
|
|
# we know that PyTorch was compiled with gcc 4.9.2.
|
|
# if the extension is compiled with gcc >= 5.1,
|
|
# then we have to define _GLIBCXX_USE_CXX11_ABI=0
|
|
# so that the std::string in the API is resolved to
|
|
# non-C++11 symbols.
|
|
define = '-D_GLIBCXX_USE_CXX11_ABI=0'
|
|
if is_binary_build():
|
|
if isinstance(extension.extra_compile_args, dict):
|
|
for args in extension.extra_compile_args.values():
|
|
args.append(define)
|
|
else:
|
|
extension.extra_compile_args.append(define)
|
|
|
|
|
|
def CppExtension(name, sources, *args, **kwargs):
|
|
'''
|
|
Creates a :class:`setuptools.Extension` for C++.
|
|
|
|
Convenience method that creates a :class:`setuptools.Extension` with the
|
|
bare minimum (but often sufficient) arguments to build a C++ extension.
|
|
|
|
All arguments are forwarded to the :class:`setuptools.Extension`
|
|
constructor.
|
|
|
|
Example:
|
|
>>> from setuptools import setup
|
|
>>> from torch.utils.cpp_extension import BuildExtension, CppExtension
|
|
>>> setup(
|
|
name='extension',
|
|
ext_modules=[
|
|
CppExtension(
|
|
name='extension',
|
|
sources=['extension.cpp'],
|
|
extra_compile_args=['-g'])),
|
|
],
|
|
cmdclass={
|
|
'build_ext': BuildExtension
|
|
})
|
|
'''
|
|
include_dirs = kwargs.get('include_dirs', [])
|
|
include_dirs += include_paths()
|
|
kwargs['include_dirs'] = include_dirs
|
|
|
|
if sys.platform == 'win32':
|
|
library_dirs = kwargs.get('library_dirs', [])
|
|
library_dirs += library_paths()
|
|
kwargs['library_dirs'] = library_dirs
|
|
|
|
libraries = kwargs.get('libraries', [])
|
|
libraries.append('caffe2')
|
|
libraries.append('torch')
|
|
libraries.append('_C')
|
|
kwargs['libraries'] = libraries
|
|
|
|
kwargs['language'] = 'c++'
|
|
return setuptools.Extension(name, sources, *args, **kwargs)
|
|
|
|
|
|
def CUDAExtension(name, sources, *args, **kwargs):
|
|
'''
|
|
Creates a :class:`setuptools.Extension` for CUDA/C++.
|
|
|
|
Convenience method that creates a :class:`setuptools.Extension` with the
|
|
bare minimum (but often sufficient) arguments to build a CUDA/C++
|
|
extension. This includes the CUDA include path, library path and runtime
|
|
library.
|
|
|
|
All arguments are forwarded to the :class:`setuptools.Extension`
|
|
constructor.
|
|
|
|
Example:
|
|
>>> from setuptools import setup
|
|
>>> from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
|
>>> setup(
|
|
name='cuda_extension',
|
|
ext_modules=[
|
|
CUDAExtension(
|
|
name='cuda_extension',
|
|
sources=['extension.cpp', 'extension_kernel.cu'],
|
|
extra_compile_args={'cxx': ['-g'],
|
|
'nvcc': ['-O2']})
|
|
],
|
|
cmdclass={
|
|
'build_ext': BuildExtension
|
|
})
|
|
'''
|
|
library_dirs = kwargs.get('library_dirs', [])
|
|
library_dirs += library_paths(cuda=True)
|
|
kwargs['library_dirs'] = library_dirs
|
|
|
|
libraries = kwargs.get('libraries', [])
|
|
libraries.append('cudart')
|
|
if sys.platform == 'win32':
|
|
libraries.append('caffe2')
|
|
libraries.append('torch')
|
|
libraries.append('caffe2_gpu')
|
|
libraries.append('_C')
|
|
kwargs['libraries'] = libraries
|
|
|
|
include_dirs = kwargs.get('include_dirs', [])
|
|
include_dirs += include_paths(cuda=True)
|
|
kwargs['include_dirs'] = include_dirs
|
|
|
|
kwargs['language'] = 'c++'
|
|
|
|
return setuptools.Extension(name, sources, *args, **kwargs)
|
|
|
|
|
|
def include_paths(cuda=False):
|
|
'''
|
|
Get the include paths required to build a C++ or CUDA extension.
|
|
|
|
Args:
|
|
cuda: If `True`, includes CUDA-specific include paths.
|
|
|
|
Returns:
|
|
A list of include path strings.
|
|
'''
|
|
here = os.path.abspath(__file__)
|
|
torch_path = os.path.dirname(os.path.dirname(here))
|
|
lib_include = os.path.join(torch_path, 'lib', 'include')
|
|
# Some internal (old) Torch headers don't properly prefix their includes,
|
|
# so we need to pass -Itorch/lib/include/TH as well.
|
|
paths = [
|
|
lib_include,
|
|
os.path.join(lib_include, 'TH'),
|
|
os.path.join(lib_include, 'THC')
|
|
]
|
|
if cuda:
|
|
paths.append(_join_cuda_home('include'))
|
|
if CUDNN_HOME is not None:
|
|
paths.append(os.path.join(CUDNN_HOME, 'include'))
|
|
return paths
|
|
|
|
|
|
def library_paths(cuda=False):
|
|
'''
|
|
Get the library paths required to build a C++ or CUDA extension.
|
|
|
|
Args:
|
|
cuda: If `True`, includes CUDA-specific library paths.
|
|
|
|
Returns:
|
|
A list of library path strings.
|
|
'''
|
|
paths = []
|
|
|
|
if sys.platform == 'win32':
|
|
here = os.path.abspath(__file__)
|
|
torch_path = os.path.dirname(os.path.dirname(here))
|
|
lib_path = os.path.join(torch_path, 'lib')
|
|
|
|
paths.append(lib_path)
|
|
|
|
if cuda:
|
|
lib_dir = 'lib/x64' if sys.platform == 'win32' else 'lib64'
|
|
paths.append(_join_cuda_home(lib_dir))
|
|
if CUDNN_HOME is not None:
|
|
paths.append(os.path.join(CUDNN_HOME, lib_dir))
|
|
return paths
|
|
|
|
|
|
def load(name,
|
|
sources,
|
|
extra_cflags=None,
|
|
extra_cuda_cflags=None,
|
|
extra_ldflags=None,
|
|
extra_include_paths=None,
|
|
build_directory=None,
|
|
verbose=False,
|
|
with_cuda=None):
|
|
'''
|
|
Loads a PyTorch C++ extension just-in-time (JIT).
|
|
|
|
To load an extension, a Ninja build file is emitted, which is used to
|
|
compile the given sources into a dynamic library. This library is
|
|
subsequently loaded into the current Python process as a module and
|
|
returned from this function, ready for use.
|
|
|
|
By default, the directory to which the build file is emitted and the
|
|
resulting library compiled to is ``<tmp>/torch_extensions/<name>``, where
|
|
``<tmp>`` is the temporary folder on the current platform and ``<name>``
|
|
the name of the extension. This location can be overridden in two ways.
|
|
First, if the ``TORCH_EXTENSIONS_DIR`` environment variable is set, it
|
|
replaces ``<tmp>/torch_extensions`` and all extensions will be compiled
|
|
into subfolders of this directory. Second, if the ``build_directory``
|
|
argument to this function is supplied, it overrides the entire path, i.e.
|
|
the library will be compiled into that folder directly.
|
|
|
|
To compile the sources, the default system compiler (``c++``) is used,
|
|
which can be overridden by setting the ``CXX`` environment variable. To pass
|
|
additional arguments to the compilation process, ``extra_cflags`` or
|
|
``extra_ldflags`` can be provided. For example, to compile your extension
|
|
with optimizations, pass ``extra_cflags=['-O3']``. You can also use
|
|
``extra_cflags`` to pass further include directories.
|
|
|
|
CUDA support with mixed compilation is provided. Simply pass CUDA source
|
|
files (``.cu`` or ``.cuh``) along with other sources. Such files will be
|
|
detected and compiled with nvcc rather than the C++ compiler. This includes
|
|
passing the CUDA lib64 directory as a library directory, and linking
|
|
``cudart``. You can pass additional flags to nvcc via
|
|
``extra_cuda_cflags``, just like with ``extra_cflags`` for C++. Various
|
|
heuristics for finding the CUDA install directory are used, which usually
|
|
work fine. If not, setting the ``CUDA_HOME`` environment variable is the
|
|
safest option.
|
|
|
|
Args:
|
|
name: The name of the extension to build. This MUST be the same as the
|
|
name of the pybind11 module!
|
|
sources: A list of relative or absolute paths to C++ source files.
|
|
extra_cflags: optional list of compiler flags to forward to the build.
|
|
extra_cuda_cflags: optional list of compiler flags to forward to nvcc
|
|
when building CUDA sources.
|
|
extra_ldflags: optional list of linker flags to forward to the build.
|
|
extra_include_paths: optional list of include directories to forward
|
|
to the build.
|
|
build_directory: optional path to use as build workspace.
|
|
verbose: If ``True``, turns on verbose logging of load steps.
|
|
with_cuda: Determines whether CUDA headers and libraries are added to
|
|
the build. If set to ``None`` (default), this value is
|
|
automatically determined based on the existence of ``.cu`` or
|
|
``.cuh`` in ``sources``. Set it to `True`` to force CUDA headers
|
|
and libraries to be included.
|
|
|
|
Returns:
|
|
The loaded PyTorch extension as a Python module.
|
|
|
|
Example:
|
|
>>> from torch.utils.cpp_extension import load
|
|
>>> module = load(
|
|
name='extension',
|
|
sources=['extension.cpp', 'extension_kernel.cu'],
|
|
extra_cflags=['-O2'],
|
|
verbose=True)
|
|
'''
|
|
return _jit_compile(
|
|
name,
|
|
[sources] if isinstance(sources, str) else sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory or _get_build_directory(name, verbose),
|
|
verbose,
|
|
with_cuda=with_cuda)
|
|
|
|
|
|
def load_inline(name,
|
|
cpp_sources,
|
|
cuda_sources=None,
|
|
functions=None,
|
|
extra_cflags=None,
|
|
extra_cuda_cflags=None,
|
|
extra_ldflags=None,
|
|
extra_include_paths=None,
|
|
build_directory=None,
|
|
verbose=False,
|
|
with_cuda=None):
|
|
'''
|
|
Loads a PyTorch C++ extension just-in-time (JIT) from string sources.
|
|
|
|
This function behaves exactly like :func:`load`, but takes its sources as
|
|
strings rather than filenames. These strings are stored to files in the
|
|
build directory, after which the behavior of :func:`load_inline` is
|
|
identical to :func:`load`.
|
|
|
|
See `the
|
|
tests <https://github.com/pytorch/pytorch/blob/master/test/test_cpp_extensions.py>`_
|
|
for good examples of using this function.
|
|
|
|
Sources may omit two required parts of a typical non-inline C++ extension:
|
|
the necessary header includes, as well as the (pybind11) binding code. More
|
|
precisely, strings passed to ``cpp_sources`` are first concatenated into a
|
|
single ``.cpp`` file. This file is then prepended with ``#include
|
|
<torch/torch.h>``.
|
|
|
|
Furthermore, if the ``functions`` argument is supplied, bindings will be
|
|
automatically generated for each function specified. ``functions`` can
|
|
either be a list of function names, or a dictionary mapping from function
|
|
names to docstrings. If a list is given, the name of each function is used
|
|
as its docstring.
|
|
|
|
The sources in ``cuda_sources`` are concatenated into a separate ``.cu``
|
|
file and prepended with ``ATen/ATen.h``, ``cuda.h`` and ``cuda_runtime.h``
|
|
includes. The ``.cpp`` and ``.cu`` files are compiled separately, but
|
|
ultimately linked into a single library. Note that no bindings are
|
|
generated for functions in ``cuda_sources`` per se. To bind to a CUDA
|
|
kernel, you must create a C++ function that calls it, and either declare or
|
|
define this C++ function in one of the ``cpp_sources`` (and include its
|
|
name in ``functions``).
|
|
|
|
See :func:`load` for a description of arguments omitted below.
|
|
|
|
Args:
|
|
cpp_sources: A string, or list of strings, containing C++ source code.
|
|
cuda_sources: A string, or list of strings, containing CUDA source code.
|
|
functions: A list of function names for which to generate function
|
|
bindings. If a dictionary is given, it should map function names to
|
|
docstrings (which are otherwise just the function names).
|
|
with_cuda: Determines whether CUDA headers and libraries are added to
|
|
the build. If set to ``None`` (default), this value is
|
|
automatically determined based on whether ``cuda_sources`` is
|
|
provided. Set it to `True`` to force CUDA headers
|
|
and libraries to be included.
|
|
|
|
Example:
|
|
>>> from torch.utils.cpp_extension import load_inline
|
|
>>> source = \'\'\'
|
|
at::Tensor sin_add(at::Tensor x, at::Tensor y) {
|
|
return x.sin() + y.sin();
|
|
}
|
|
\'\'\'
|
|
>>> module = load_inline(name='inline_extension',
|
|
cpp_sources=[source],
|
|
functions=['sin_add'])
|
|
'''
|
|
build_directory = build_directory or _get_build_directory(name, verbose)
|
|
|
|
if isinstance(cpp_sources, str):
|
|
cpp_sources = [cpp_sources]
|
|
cuda_sources = cuda_sources or []
|
|
if isinstance(cuda_sources, str):
|
|
cuda_sources = [cuda_sources]
|
|
|
|
cpp_sources.insert(0, '#include <torch/torch.h>')
|
|
|
|
# If `functions` is supplied, we create the pybind11 bindings for the user.
|
|
# Here, `functions` is (or becomes, after some processing) a map from
|
|
# function names to function docstrings.
|
|
if functions is not None:
|
|
cpp_sources.append('PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {')
|
|
if isinstance(functions, str):
|
|
functions = [functions]
|
|
if isinstance(functions, list):
|
|
# Make the function docstring the same as the function name.
|
|
functions = dict((f, f) for f in functions)
|
|
elif not isinstance(functions, dict):
|
|
raise ValueError(
|
|
"Expected 'functions' to be a list or dict, but was {}".format(
|
|
type(functions)))
|
|
for function_name, docstring in functions.items():
|
|
cpp_sources.append('m.def("{0}", &{0}, "{1}");'.format(
|
|
function_name, docstring))
|
|
cpp_sources.append('}')
|
|
|
|
cpp_source_path = os.path.join(build_directory, 'main.cpp')
|
|
with open(cpp_source_path, 'w') as cpp_source_file:
|
|
cpp_source_file.write('\n'.join(cpp_sources))
|
|
|
|
sources = [cpp_source_path]
|
|
|
|
if cuda_sources:
|
|
cuda_sources.insert(0, '#include <ATen/ATen.h>')
|
|
cuda_sources.insert(1, '#include <cuda.h>')
|
|
cuda_sources.insert(2, '#include <cuda_runtime.h>')
|
|
|
|
cuda_source_path = os.path.join(build_directory, 'cuda.cu')
|
|
with open(cuda_source_path, 'w') as cuda_source_file:
|
|
cuda_source_file.write('\n'.join(cuda_sources))
|
|
|
|
sources.append(cuda_source_path)
|
|
|
|
return _jit_compile(
|
|
name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory,
|
|
verbose,
|
|
with_cuda=with_cuda)
|
|
|
|
|
|
def _jit_compile(name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory,
|
|
verbose,
|
|
with_cuda=None):
|
|
baton = FileBaton(os.path.join(build_directory, 'lock'))
|
|
if baton.try_acquire():
|
|
try:
|
|
verify_ninja_availability()
|
|
check_compiler_abi_compatibility(os.environ.get('CXX', 'c++'))
|
|
if with_cuda is None:
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
extra_ldflags = _prepare_ldflags(
|
|
extra_ldflags or [],
|
|
with_cuda,
|
|
verbose)
|
|
build_file_path = os.path.join(build_directory, 'build.ninja')
|
|
if verbose:
|
|
print(
|
|
'Emitting ninja build file {}...'.format(build_file_path))
|
|
# NOTE: Emitting a new ninja build file does not cause re-compilation if
|
|
# the sources did not change, so it's ok to re-emit (and it's fast).
|
|
_write_ninja_file(
|
|
path=build_file_path,
|
|
name=name,
|
|
sources=sources,
|
|
extra_cflags=extra_cflags or [],
|
|
extra_cuda_cflags=extra_cuda_cflags or [],
|
|
extra_ldflags=extra_ldflags or [],
|
|
extra_include_paths=extra_include_paths or [],
|
|
with_cuda=with_cuda)
|
|
|
|
if verbose:
|
|
print('Building extension module {}...'.format(name))
|
|
_build_extension_module(name, build_directory)
|
|
finally:
|
|
baton.release()
|
|
else:
|
|
baton.wait()
|
|
|
|
if verbose:
|
|
print('Loading extension module {}...'.format(name))
|
|
return _import_module_from_library(name, build_directory)
|
|
|
|
|
|
def verify_ninja_availability():
|
|
'''
|
|
Returns ``True`` if the `ninja <https://ninja-build.org/>`_ build system is
|
|
available on the system.
|
|
'''
|
|
with open(os.devnull, 'wb') as devnull:
|
|
try:
|
|
subprocess.check_call('ninja --version'.split(), stdout=devnull)
|
|
except OSError:
|
|
raise RuntimeError("Ninja is required to load C++ extensions")
|
|
|
|
|
|
def _prepare_ldflags(extra_ldflags, with_cuda, verbose):
|
|
if sys.platform == 'win32':
|
|
python_path = os.path.dirname(sys.executable)
|
|
python_lib_path = os.path.join(python_path, 'libs')
|
|
|
|
here = os.path.abspath(__file__)
|
|
torch_path = os.path.dirname(os.path.dirname(here))
|
|
lib_path = os.path.join(torch_path, 'lib')
|
|
|
|
extra_ldflags.append('caffe2.lib')
|
|
extra_ldflags.append('torch.lib')
|
|
if with_cuda:
|
|
extra_ldflags.append('caffe2_gpu.lib')
|
|
extra_ldflags.append('_C.lib')
|
|
extra_ldflags.append('/LIBPATH:{}'.format(python_lib_path))
|
|
extra_ldflags.append('/LIBPATH:{}'.format(lib_path))
|
|
|
|
if with_cuda:
|
|
if verbose:
|
|
print('Detected CUDA files, patching ldflags')
|
|
if sys.platform == 'win32':
|
|
extra_ldflags.append('/LIBPATH:{}'.format(
|
|
_join_cuda_home('lib/x64')))
|
|
extra_ldflags.append('cudart.lib')
|
|
if CUDNN_HOME is not None:
|
|
extra_ldflags.append(os.path.join(CUDNN_HOME, 'lib/x64'))
|
|
else:
|
|
extra_ldflags.append('-L{}'.format(_join_cuda_home('lib64')))
|
|
extra_ldflags.append('-lcudart')
|
|
if CUDNN_HOME is not None:
|
|
extra_ldflags.append('-L{}'.format(os.path.join(CUDNN_HOME, 'lib64')))
|
|
|
|
return extra_ldflags
|
|
|
|
|
|
def _get_build_directory(name, verbose):
|
|
root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
|
|
if root_extensions_directory is None:
|
|
# tempfile.gettempdir() will be /tmp on UNIX and \TEMP on Windows.
|
|
root_extensions_directory = os.path.join(tempfile.gettempdir(),
|
|
'torch_extensions')
|
|
|
|
if verbose:
|
|
print('Using {} as PyTorch extensions root...'.format(
|
|
root_extensions_directory))
|
|
|
|
build_directory = os.path.join(root_extensions_directory, name)
|
|
if not os.path.exists(build_directory):
|
|
if verbose:
|
|
print('Creating extension directory {}...'.format(build_directory))
|
|
# This is like mkdir -p, i.e. will also create parent directories.
|
|
os.makedirs(build_directory)
|
|
|
|
return build_directory
|
|
|
|
|
|
def _build_extension_module(name, build_directory):
|
|
try:
|
|
subprocess.check_output(
|
|
['ninja', '-v'], stderr=subprocess.STDOUT, cwd=build_directory)
|
|
except subprocess.CalledProcessError:
|
|
# Python 2 and 3 compatible way of getting the error object.
|
|
_, error, _ = sys.exc_info()
|
|
# error.output contains the stdout and stderr of the build attempt.
|
|
raise RuntimeError("Error building extension '{}': {}".format(
|
|
name, error.output.decode()))
|
|
|
|
|
|
def _import_module_from_library(module_name, path):
|
|
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
|
|
file, path, description = imp.find_module(module_name, [path])
|
|
# Close the .so file after load.
|
|
with file:
|
|
return imp.load_module(module_name, file, path, description)
|
|
|
|
|
|
def _write_ninja_file(path,
|
|
name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
with_cuda=False):
|
|
extra_cflags = [flag.strip() for flag in extra_cflags]
|
|
extra_cuda_cflags = [flag.strip() for flag in extra_cuda_cflags]
|
|
extra_ldflags = [flag.strip() for flag in extra_ldflags]
|
|
extra_include_paths = [flag.strip() for flag in extra_include_paths]
|
|
|
|
# Version 1.3 is required for the `deps` directive.
|
|
config = ['ninja_required_version = 1.3']
|
|
config.append('cxx = {}'.format(os.environ.get('CXX', 'c++')))
|
|
if with_cuda:
|
|
config.append('nvcc = {}'.format(_join_cuda_home('bin', 'nvcc')))
|
|
|
|
# Turn into absolute paths so we can emit them into the ninja build
|
|
# file wherever it is.
|
|
sources = [os.path.abspath(file) for file in sources]
|
|
user_includes = [os.path.abspath(file) for file in extra_include_paths]
|
|
|
|
# include_paths() gives us the location of torch/torch.h
|
|
system_includes = include_paths(with_cuda)
|
|
# sysconfig.get_paths()['include'] gives us the location of Python.h
|
|
system_includes.append(sysconfig.get_paths()['include'])
|
|
|
|
# Windoze does not understand `-isystem`.
|
|
if sys.platform == 'win32':
|
|
user_includes += system_includes
|
|
system_includes.clear()
|
|
|
|
common_cflags = ['-DTORCH_EXTENSION_NAME={}'.format(name)]
|
|
common_cflags += ['-I{}'.format(include) for include in user_includes]
|
|
common_cflags += ['-isystem {}'.format(include) for include in system_includes]
|
|
|
|
if is_binary_build():
|
|
common_cflags += ['-D_GLIBCXX_USE_CXX11_ABI=0']
|
|
|
|
cflags = common_cflags + ['-fPIC', '-std=c++11'] + extra_cflags
|
|
if sys.platform == 'win32':
|
|
from distutils.spawn import _nt_quote_args
|
|
cflags = _nt_quote_args(cflags)
|
|
flags = ['cflags = {}'.format(' '.join(cflags))]
|
|
|
|
if with_cuda:
|
|
cuda_flags = common_cflags + COMMON_NVCC_FLAGS
|
|
if sys.platform == 'win32':
|
|
cuda_flags = _nt_quote_args(cuda_flags)
|
|
else:
|
|
cuda_flags += ['--compiler-options', "'-fPIC'"]
|
|
cuda_flags += extra_cuda_cflags
|
|
if not any(flag.startswith('-std=') for flag in cuda_flags):
|
|
cuda_flags.append('-std=c++11')
|
|
|
|
flags.append('cuda_flags = {}'.format(' '.join(cuda_flags)))
|
|
|
|
if sys.platform == 'win32':
|
|
ldflags = ['/DLL'] + extra_ldflags
|
|
else:
|
|
ldflags = ['-shared'] + extra_ldflags
|
|
# The darwin linker needs explicit consent to ignore unresolved symbols.
|
|
if sys.platform == 'darwin':
|
|
ldflags.append('-undefined dynamic_lookup')
|
|
elif sys.platform == 'win32':
|
|
ldflags = _nt_quote_args(ldflags)
|
|
flags.append('ldflags = {}'.format(' '.join(ldflags)))
|
|
|
|
# See https://ninja-build.org/build.ninja.html for reference.
|
|
compile_rule = ['rule compile']
|
|
if sys.platform == 'win32':
|
|
compile_rule.append(
|
|
' command = cl /showIncludes $cflags -c $in /Fo$out')
|
|
compile_rule.append(' deps = msvc')
|
|
else:
|
|
compile_rule.append(
|
|
' command = $cxx -MMD -MF $out.d $cflags -c $in -o $out')
|
|
compile_rule.append(' depfile = $out.d')
|
|
compile_rule.append(' deps = gcc')
|
|
|
|
if with_cuda:
|
|
cuda_compile_rule = ['rule cuda_compile']
|
|
cuda_compile_rule.append(
|
|
' command = $nvcc $cuda_flags -c $in -o $out')
|
|
|
|
link_rule = ['rule link']
|
|
if sys.platform == 'win32':
|
|
cl_paths = subprocess.check_output(['where',
|
|
'cl']).decode().split('\r\n')
|
|
if len(cl_paths) >= 1:
|
|
cl_path = os.path.dirname(cl_paths[0]).replace(':', '$:')
|
|
else:
|
|
raise RuntimeError("MSVC is required to load C++ extensions")
|
|
link_rule.append(
|
|
' command = "{}/link.exe" $in /nologo $ldflags /out:$out'.format(
|
|
cl_path))
|
|
else:
|
|
link_rule.append(' command = $cxx $in $ldflags -o $out')
|
|
|
|
# Emit one build rule per source to enable incremental build.
|
|
object_files = []
|
|
build = []
|
|
for source_file in sources:
|
|
# '/path/to/file.cpp' -> 'file'
|
|
file_name = os.path.splitext(os.path.basename(source_file))[0]
|
|
if _is_cuda_file(source_file) and with_cuda:
|
|
rule = 'cuda_compile'
|
|
# Use a different object filename in case a C++ and CUDA file have
|
|
# the same filename but different extension (.cpp vs. .cu).
|
|
target = '{}.cuda.o'.format(file_name)
|
|
else:
|
|
rule = 'compile'
|
|
target = '{}.o'.format(file_name)
|
|
object_files.append(target)
|
|
if sys.platform == 'win32':
|
|
source_file = source_file.replace(':', '$:')
|
|
source_file = source_file.replace(" ", "$ ")
|
|
build.append('build {}: {} {}'.format(target, rule, source_file))
|
|
|
|
ext = '.pyd' if sys.platform == 'win32' else '.so'
|
|
library_target = '{}{}'.format(name, ext)
|
|
link = ['build {}: link {}'.format(library_target, ' '.join(object_files))]
|
|
|
|
default = ['default {}'.format(library_target)]
|
|
|
|
# 'Blocks' should be separated by newlines, for visual benefit.
|
|
blocks = [config, flags, compile_rule]
|
|
if with_cuda:
|
|
blocks.append(cuda_compile_rule)
|
|
blocks += [link_rule, build, link, default]
|
|
with open(path, 'w') as build_file:
|
|
for block in blocks:
|
|
lines = '\n'.join(block)
|
|
build_file.write('{}\n\n'.format(lines))
|
|
|
|
|
|
def _join_cuda_home(*paths):
|
|
'''
|
|
Joins paths with CUDA_HOME, or raises an error if it CUDA_HOME is not set.
|
|
|
|
This is basically a lazy way of raising an error for missing $CUDA_HOME
|
|
only once we need to get any CUDA-specific path.
|
|
'''
|
|
if CUDA_HOME is None:
|
|
raise EnvironmentError('CUDA_HOME environment variable is not set. '
|
|
'Please set it to your CUDA install root.')
|
|
return os.path.join(CUDA_HOME, *paths)
|
|
|
|
|
|
def _is_cuda_file(path):
|
|
return os.path.splitext(path)[1] in ['.cu', '.cuh']
|