pytorch/benchmarks
Jason Ansel c7c09722ad Move TorchDynamo into PyTorch core (#86461)
Context:
https://github.com/pytorch/torchdynamo/issues/1588

This PR moves [TorchDynamo](https://github.com/pytorch/torchdynamo) and TorchInductor into PyTorch core.
- `torchdynamo` becomes `torch._dynamo`
- `torchinductor` becomes `torch._inductor`

This PR was generated by running `copy_to_core.sh` in https://github.com/pytorch/torchdynamo/pull/1538

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86461
Approved by: https://github.com/voznesenskym
2022-10-13 23:18:06 +00:00
..
cpp [NVFuser] Upstream push 0907 (#84626) 2022-09-23 20:29:48 +00:00
distributed Fix use-dict-literal lint (#83718) 2022-08-24 00:26:46 +00:00
dynamo Move TorchDynamo into PyTorch core (#86461) 2022-10-13 23:18:06 +00:00
fastrnns [libkineto] Re-enable user-annotations in PyTorch (#75601) 2022-04-26 23:54:22 +00:00
framework_overhead_benchmark
functional_autograd_benchmark Added functorch to functional_autograd_benchmark 2022-04-22 14:04:26 +00:00
fuser Benchmarks for various fusers (#67622) 2021-11-04 18:57:17 -07:00
instruction_counts Fix import of instruction count benchmark (#85359) 2022-09-21 17:17:47 +00:00
operator_benchmark Improve interpolate() speed for channels_last CPU images and masks (#86361) 2022-10-11 16:17:36 +00:00
overrides_benchmark Use classmethods for overrides (#64841) 2021-09-17 08:32:49 -07:00
profiler_benchmark
record_function_benchmark
serialization
sparse Add CSR (compressed sparse row) layout for sparse tensors (#50937) 2021-04-12 10:09:12 -07:00
static_runtime [Static Runtime] Block linalg_svdvals codegen & run codegen script (#85983) 2022-10-06 01:07:40 +00:00
tensorexpr Fix some typos. 2022-04-11 21:55:59 +00:00
transformer Basic SDP benchmark harness (#86729) 2022-10-12 01:27:59 +00:00
compare-fastrnn-results.py
compare.sh
README.md Add CSR (compressed sparse row) layout for sparse tensors (#50937) 2021-04-12 10:09:12 -07:00
upload_scribe.py Fix benchmark's import module and remove its usage of tools.stats.scribe (#61808) 2021-07-19 09:45:05 -07:00

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite