pytorch/test/cpp/tensorexpr/test_kernel.cpp
Will Constable 4f34cd6d1e Replace all CHECK_ and DCHECK_ with TORCH_* macros (#82032)
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases.

All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed.
c10/util/logging_is_not_google_glog.h
c10/util/logging_is_google_glog.h

Fixes https://github.com/pytorch/pytorch/issues/81415

cc @miladm @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032
Approved by: https://github.com/soumith, https://github.com/miladm
2022-07-26 01:20:44 +00:00

2064 lines
73 KiB
C++

#include <gtest/gtest.h>
#include <ATen/code_template.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/torch.h>
#include <cmath>
#include <sstream>
#include <stdexcept>
namespace torch {
namespace jit {
using namespace torch::indexing;
using namespace torch::jit::tensorexpr;
class Kernel : public ::testing::Test {
public:
// NOLINTNEXTLINE(modernize-use-override,cppcoreguidelines-explicit-virtual-functions)
void SetUp() {
getTEMustUseLLVMOnCPU() = false;
}
};
TEST_F(Kernel, InliningIntermediates) {
// here, each mul has only one use, so it should be completely inlined
{
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%one : int = prim::Constant[value=1]()
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
%5: Float(5, 3, strides=[3, 1]) = aten::add(%4, %1, %one)
return (%5))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
}
{
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=${device}),
%1 : Float(5, 3, strides=[3, 1], device=${device})):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%one : int = prim::Constant[value=1]()
%3 : Float(5, 3, strides=[3, 1]) = aten::sub(%0, %2, %one)
%4 : Float(5, 3, strides=[3, 1]) = aten::add(%3, %0, %one)
%5 : Float(5, 3, strides=[3, 1]) = aten::div(%3, %0)
return (%4, %5))IR";
for (bool use_cuda : {false, true}) {
if (!torch::cuda::is_available() && use_cuda) {
continue;
}
at::jit::TemplateEnv env;
env.s("device", use_cuda ? "cuda:0" : "cpu");
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// aten_mul only has one use, inlined completely
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
// aten_sub should be removed by the CUDA backend by metavar rewriting
// and by the CPU backend by horizontal fusion.
torch::jit::testing::FileCheck().check_not("aten_sub")->run(oss.str());
}
}
}
TEST_F(Kernel, PreAllocIntermediateBufs) {
const auto graph_string = R"IR(
graph(%a.1 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu),
%b.1 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=1]()
%c.2 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu) = aten::matmul(%a.1, %b.1) # test_matmul.py:12:12
%3 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu) = aten::add(%a.1, %c.2, %2) # test_matmul.py:13:15
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::matmul(a, b) + a;
TensorExprKernel k(graph, {}, {}, true);
std::vector<at::Tensor> inputs = {a, b};
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Check whether the intermediate buffer has been added to constants
auto constants = k.getConstantDescriptors();
ASSERT_EQ(constants.size(), 1);
// Check the IR we produced
torch::jit::testing::FileCheck().check_not("Alloc")->run(oss.str());
torch::jit::testing::FileCheck().check_not("Free")->run(oss.str());
// Check correctness
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, _1) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, _2) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, _3) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, Huge) {
const auto graph_string = R"IR(
graph(%x.1 : Float(4000000000, strides=[1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=0]()
%2 : Float(1, 4000000000, strides=[4000000000, 1], requires_grad=0, device=cpu) = aten::unsqueeze(%x.1, %1)
%3 : Float(1, 4000000000, strides=[4000000000, 1], requires_grad=0, device=cpu) = aten::relu(%2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::ostringstream oss;
oss << *k.getCodeGenStmt();
// The 4000000000 iterations loop will be split into 500000000 x 8 and the
// outer loop will be parallel. If LLVM is not present, it will not be split,
// and to cover both of these cases we're looking for 00000000ll; in the
// output.
const std::string& verification_pattern = R"IR(# CHECK: 00000000ll;)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
TEST_F(Kernel, ParallelStrided) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, 40005, strides=[120015, 40005, 1], device=cpu),
%1 : Float(5, 3, 40005, strides=[960120, 160020, 2], device=cpu)):
%2 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 40005}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6, 80010}, TensorOptions(kCPU).dtype(at::kFloat))
.index(
{Slice(None, None, 2),
Slice(None, None, 2),
Slice(None, None, 2)});
auto ref = a * (a * b);
auto o = at::zeros_like(ref);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, DISABLED_Shape_Inference) {
// disabled: doesn't do stride propagation, and isn't being used currently
// Test TensorExpr shape inference capabilities: it should only require shapes
// for the inputs
{
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
const auto graph_string = R"IR(
graph(%0 : Float(8, 8, strides=[8, 1], device=cpu),
%1 : Float(8, 8, strides=[8, 1], device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor, %4 : Tensor = prim::ConstantChunk[dim=1,chunks=2](%2)
%r : Tensor = aten::mul(%3, %4)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({8, 4}, TensorOptions(kCPU).dtype(at::kFloat));
auto t = torch::chunk(a * b, 2, 1);
auto ref = t[0] * t[1];
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
TORCH_CHECK_EQ(o.sizes()[0], 8);
TORCH_CHECK_EQ(o.sizes()[1], 4);
for (size_t i = 0; i < 8 * 4; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that shape inference handles aten::unsqueeze
const auto graph_string = R"IR(
graph(%a : Float(4, 2, strides=[2, 1], device=cpu),
%b : Float(4, 3, 2, strides=[6, 2, 1], device=cpu),
%c : Float(3, 2, 2, strides=[4, 2, 1], device=cpu)):
%one : int = prim::Constant[value=1]()
%minus_one : int = prim::Constant[value=-1]()
%three : int = prim::Constant[value=3]()
%minus_four : int = prim::Constant[value=-4]()
%a1 : Tensor = aten::unsqueeze(%a, %one) # new size: [4,1,2]
%a2 : Tensor = aten::unsqueeze(%a1, %minus_one) # new size: [4,1,2,1]
%b1 : Tensor = aten::unsqueeze(%b, %three) # new size: [4,3,2,1]
%c1 : Tensor = aten::unsqueeze(%c, %minus_four) # new size: [1,3,2,2]
%ab : Tensor = aten::mul(%a2, %b1) # expected size: [4,3,2,1]
%abc : Tensor = aten::mul(%ab, %c1) # expected size: [4,3,2,2]
return (%abc))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({4, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({4, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({4, 3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::unsqueeze(at::unsqueeze(a, 1), -1) * at::unsqueeze(b, 3) *
at::unsqueeze(c, -4);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_mul)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
// Check sizes
TORCH_CHECK_EQ(o.sizes().size(), ref.sizes().size());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
TORCH_CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that shape inference handles aten::cat
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Tensor = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({5, 19, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
// Check sizes
TORCH_CHECK_EQ(o.sizes().size(), ref.sizes().size());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
TORCH_CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that we throw an error when input list for aten::cat is empty
const auto graph_string = R"IR(
graph():
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct()
%r : Tensor = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto compile = [&]() {
TensorExprKernel k(graph);
k.getCodeGenStmt();
};
ASSERT_THROWS_WITH(compile(), "Empty input list is passed to aten::cat");
}
{
// Test that we throw an error when 'dim' passed to aten::cat is invalid
const auto ir_dim_99 = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=99]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
return (%r))IR";
const auto ir_dim_minus_6 = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=-6]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
return (%r))IR";
auto compile = [](const std::string& graph_string) {
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
k.getCodeGenStmt();
};
ASSERT_THROWS_WITH(compile(ir_dim_99), "Invalid index");
ASSERT_THROWS_WITH(compile(ir_dim_minus_6), "Invalid index");
}
}
TEST_F(Kernel, CatInputTypesPromotion) {
{
// Test that we properly promote input types for aten::cat
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Double(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Double(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kDouble));
auto ref = at::cat({a, b, c}, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
TORCH_CHECK_EQ(o.sizes().size(), ref.sizes().size());
TORCH_CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
TORCH_CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
TORCH_CHECK_EQ(((double*)o.data_ptr())[i], ((double*)ref.data_ptr())[i]);
}
}
}
TEST_F(Kernel, CatAndInlineWithAConstantDim) {
const auto graph_string = R"IR(
graph(%0 : Float(1, 512, strides=[1024, 1], requires_grad=0, device=cpu),
%1 : Float(1, 512, strides=[1024, 1], requires_grad=0, device=cpu)):
%2 : bool = prim::Constant[value=0]()
%3 : int = prim::Constant[value=1]()
%4 : Tensor[] = prim::ListConstruct(%0, %1)
%5 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::cat(%4, %3)
%6 : Tensor[] = prim::ListConstruct(%5)
%7 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::cat(%6, %3)
%8 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::_cast_Float(%7, %2)
return (%8, %7))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto a = at::rand({1, 512}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({1, 512}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::_cast_Float(at::cat({a, b}, 1), 0);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, CatWithEmptyInputs) {
bool curr_cat_wo_conditionals = getCatWoConditionals();
for (auto cat_wo_conditionals : {true, false}) {
getCatWoConditionals() = cat_wo_conditionals;
const auto graph_string = R"IR(
graph(%0 : Float(0, 64, strides=[64, 1], requires_grad=0, device=cpu),
%1 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu)):
%3 : int = prim::Constant[value=0]()
%6 : Float(0, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::tanh(%0)
%7 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::tanh(%1)
%10 : Tensor[] = prim::ListConstruct(%6, %7)
%11 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::cat(%10, %3)
return (%11))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto a = at::rand({0, 64}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 64}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({at::tanh(a), at::tanh(b)}, 0);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
getCatWoConditionals() = curr_cat_wo_conditionals;
}
TEST_F(Kernel, CatWoConditionals) {
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK: for
# CHECK: for
# CHECK: aten_cat
# CHECK: for
# CHECK: for
# CHECK: aten_cat
# CHECK: for
# CHECK: for
# CHECK: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<at::Tensor> inputs = {a, b, c};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
TORCH_CHECK_EQ(o.sizes().size(), ref.sizes().size());
TORCH_CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
TORCH_CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
getCatWoConditionals() = old_cat_wo_conditionals;
}
TEST_F(Kernel, OptimizeConditionals) {
bool old_cat_wo_conditionals = getCatWoConditionals();
bool old_opt_conditionals = getOptConditionals();
getCatWoConditionals() = false;
getOptConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(5, 3, strides=[3, 1], device=cpu),
%b : Float(5, 7, strides=[7, 1], device=cpu),
%c : Float(5, 9, strides=[9, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(5, 19, strides=[19, 1]) = aten::cat(%inputs, %dim)
%t : Float(5, 19, strides=[19, 1]) = aten::relu(%r)
return (%t))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_relu
# CHECK: for
# CHECK-NEXT: aten_relu
# CHECK: for
# CHECK-NEXT: aten_relu
# CHECK-NOT: Allocate
# CHECK-NOT: Free)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto b = at::rand({5, 7}, TensorOptions(kCPU).dtype(at::kFloat));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto c = at::rand({5, 9}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::relu(at::cat({a, b, c}, 1));
std::vector<at::Tensor> inputs = {a, b, c};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
TORCH_CHECK_EQ(o.sizes().size(), ref.sizes().size());
TORCH_CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
TORCH_CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
getOptConditionals() = old_opt_conditionals;
getCatWoConditionals() = old_cat_wo_conditionals;
}
namespace {
std::string dtypeConstant(ScalarType scalar_type) {
if (scalar_type == ScalarType::Undefined) {
return "None = prim::Constant()";
} else {
at::jit::TemplateEnv env_dtype;
env_dtype.d("scalar_type", static_cast<int>(scalar_type));
return format("int = prim::Constant[value=${scalar_type}]()", env_dtype);
}
}
at::Tensor iotaTensor(IntArrayRef sizes, const at::TensorOptions& options) {
int64_t numel = std::accumulate(
sizes.begin(),
sizes.end(),
1,
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
std::vector<float> values(numel);
std::iota(values.begin(), values.end(), 0);
auto a = at::tensor(values, options);
return a.reshape(sizes);
}
} // namespace
TEST_F(Kernel, SumAllAxes) {
// Test lowering of sum on all axes.
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : ${dtype}
%2 : ${out_dtype}(requires_grad=0, device=cpu) = aten::sum(%0, %1)
return (%2))IR";
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
at::jit::TemplateEnv env;
env.s("dtype", dtypeConstant(scalar_type));
if (scalar_type == ScalarType::Undefined) {
env.s("out_dtype", "Float");
} else {
env.s("out_dtype", "Double");
}
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto o = at::empty({}, TensorOptions(kCPU));
c10::optional<c10::ScalarType> dtype;
if (scalar_type != ScalarType::Undefined) {
dtype = static_cast<c10::ScalarType>(scalar_type);
}
auto ref = a.sum(/*dtype=*/dtype);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
std::string li_to_str(at::ArrayRef<int64_t> li) {
std::stringstream out;
bool first = true;
for (auto elem : li) {
if (!first) {
out << ", ";
}
out << elem;
first = false;
}
return out.str();
}
TEST_F(Kernel, SumOneAxis) {
// Test lowering of sum on one axis.
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : int[] = prim::Constant[value=[${dim}]]()
%2 : bool = prim::Constant[value=${keepdim}]()
%3 : ${dtype}
%4 : ${out_dtype}(${size}, strides=[${strides}], device=cpu) = aten::sum(%0, %1, %2, %3)
return (%4))IR";
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
for (int dim = -a.dim(); dim < a.dim(); ++dim) {
for (bool keepdim : {false, true}) {
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
at::jit::TemplateEnv env;
env.d("dim", dim);
env.d("keepdim", keepdim);
env.s("dtype", dtypeConstant(scalar_type));
c10::optional<c10::ScalarType> dtype;
if (scalar_type != ScalarType::Undefined) {
dtype = static_cast<c10::ScalarType>(scalar_type);
}
auto ref = a.sum({dim}, /*keepdim=*/keepdim, /*dtype=*/dtype);
if (scalar_type == ScalarType::Undefined) {
env.s("out_dtype", "Float");
} else {
env.s("out_dtype", "Double");
}
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto o = at::empty({}, TensorOptions(kCPU));
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t
# CHECK-NEXT: sum
# CHECK-NEXT: for (int64_t
# CHECK-NEXT: sum)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
}
}
TEST_F(Kernel, SumMultipleAxes) {
// Test lowering of sum on multiple axes.
const auto graph_template = R"IR(
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=${dim1}]()
%2 : int = prim::Constant[value=${dim2}]()
%3 : int[] = prim::ListConstruct(%1, %2)
%4 : bool = prim::Constant[value=${keepdim}]()
%5 : ${dtype}
%6 : Float(${size}, strides=[${strides}], requires_grad=0, device=cpu) = aten::sum(%0, %3, %4, %5)
return (%6))IR";
auto a = iotaTensor({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
// Only iterate over positive values of axes to keep the running time
// reasonable, since the number of pairs is quadratic.
for (const auto dim1 : c10::irange(a.dim())) {
for (int dim2 = dim1 + 1; dim2 < a.dim(); ++dim2) {
for (bool keepdim : {false, true}) {
at::jit::TemplateEnv env;
env.d("dim1", dim1);
env.d("dim2", dim2);
env.d("keepdim", keepdim);
env.s("dtype", dtypeConstant(ScalarType::Undefined));
auto o = at::empty({}, TensorOptions(kCPU));
auto ref = a.sum(IntArrayRef{dim1, dim2}, /*keepdim=*/keepdim);
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: sum)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
}
}
// This test and the following ones testing Softmax only tests with dim set
// to one of the valid input dimensions. It does not test with dim=None
// because that is supposed to be deprecated.
TEST_F(Kernel, Softmax2D) {
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%dt_float : int = prim::Constant[value=7]()
%dt_none : NoneType = prim::Constant()
%4 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %${dt})
return (%4))IR";
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${other_dim} = 0; i${other_dim} < ${other_dim_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${other_dim}_1 = 0; i${other_dim}_1 < ${other_dim_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 5
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
# CHECK-NEXT: aten_softmax)IR";
for (bool empty_dtype : {false, true}) {
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
auto other_dim = (softmax_dim + 1) % a.dim();
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
env.s("dt", empty_dtype ? "dt_none" : "dt_float");
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("other_dim", other_dim);
ver_env.d("other_dim_size", a.sizes()[other_dim]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern =
format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern,
// oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
}
TEST_F(Kernel, Softmax3D) {
const auto graph_template = R"IR(
graph(%0 : Float(3, 4, 5, strides=[20, 5, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%2 : int = prim::Constant[value=7]()
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
return (%3))IR";
auto a = at::rand({3, 4, 5}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 3
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 4
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 5
# CHECK-NEXT: aten_softmax)IR";
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
std::vector<int> other_dims;
for (const auto i : c10::irange(a.dim())) {
if (i != softmax_dim) {
other_dims.push_back(i);
}
}
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("dim1", other_dims[0]);
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
ver_env.d("dim2", other_dims[1]);
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern = format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
TEST_F(Kernel, Softmax4D) {
const auto graph_template = R"IR(
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%2 : int = prim::Constant[value=7]()
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
return (%3))IR";
auto a = at::rand({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
# CHECK-NEXT: for (int i${dim3} = 0; i${dim3} < ${dim3_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
# CHECK-NEXT: for (int i${dim3}_1 = 0; i${dim3}_1 < ${dim3_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 2
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 2
# CHECK-NEXT: for (int i3_2 = 0; i3_2 < 3
# CHECK-NEXT: aten_softmax)IR";
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
std::vector<int> other_dims;
for (const auto i : c10::irange(a.dim())) {
if (i != softmax_dim) {
other_dims.push_back(i);
}
}
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("dim1", other_dims[0]);
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
ver_env.d("dim2", other_dims[1]);
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
ver_env.d("dim3", other_dims[2]);
ver_env.d("dim3_size", a.sizes()[other_dims[2]]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern = format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
TEST_F(Kernel, SignTest) {
const auto graph_template = R"IR(
graph(%0 : ${dtype}(${size}, strides=[1], device=cpu)):
%2 : ${dtype}(${size}, strides=[1]) = aten::sign(%0)
return (%2))IR";
auto run_test = [](const std::string& graph_string, const at::Tensor& input) {
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::vector<at::Tensor> inputs = {input};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = at::sign(input);
ASSERT_TRUE(at::allclose(o, ref));
};
auto common_options = at::TensorOptions()
.layout(at::kStrided)
.device(at::kCPU)
.requires_grad(false);
int default_input_size = 100;
for (auto scalar_type : {ScalarType::Float, ScalarType::Double}) {
at::Tensor corner_case_inputs;
at::jit::TemplateEnv env;
auto options = common_options;
switch (scalar_type) {
case ScalarType::Float: {
env.s("dtype", "Float");
options = options.dtype(at::kFloat);
std::vector<float> input_float = {
0.0f,
-0.0f,
std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity(),
std::nanf("1"),
-std::nanf("1")};
corner_case_inputs = at::from_blob(
input_float.data(),
{static_cast<long>(input_float.size())},
options);
auto rand_input = at::rand({default_input_size}, options);
auto input = at::cat({rand_input, corner_case_inputs});
env.d("size", at::numel(input));
const auto graph_string = format(graph_template, env);
run_test(graph_string, input);
break;
}
case ScalarType::Double: {
env.s("dtype", "Double");
options = options.dtype(at::kDouble);
std::vector<double> input_double = {
0.0,
-0.0,
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity(),
std::nan("1"),
-std::nan("1")};
corner_case_inputs = at::from_blob(
input_double.data(),
{static_cast<long>(input_double.size())},
options);
auto rand_input = at::rand({default_input_size}, options);
auto input = at::cat({rand_input, corner_case_inputs});
env.d("size", at::numel(input));
const auto graph_string = format(graph_template, env);
run_test(graph_string, input);
break;
}
default:
throw unsupported_dtype();
}
}
}
TEST_F(Kernel, InlineProducerIntoReduction) {
// Inline producer (mul) into reduction (sum).
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%0, %1)
%3 : int = prim::Constant[value=7]()
%4 : Double(device=cpu) = aten::sum(%2, %3)
return (%4))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced.
// We should have only one loop in the end.
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i_1 = 0ll; i_1 < 5
# CHECK-NEXT: for (int64_t j_1 = 0ll; j_1 < 3
# CHECK-NEXT: sum
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = (a * b).sum(at::kDouble);
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, InlineReductionIntoConsumer) {
// Inline producer (mul %2) into reduction (sum %4) but DO NOT
// inline the reduction into consumer (mul %4).
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : int = prim::Constant[value=6]()
%4 : Float(device=cpu) = aten::sum(%2, %3)
%5 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%2, %4)
return (%5))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced.
// We should have two loops in the end.
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i_1 = 0ll; i_1 < 5
# CHECK-NEXT: for (int64_t j_1 = 0ll; j_1 < 3
# CHECK-NEXT: sum
# CHECK: for (int64_t i_2 = 0ll; i_2 < 5
# CHECK-NEXT: for (int64_t j_2 = 0ll; j_2 < 3
# CHECK-NEXT: aten_mul
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = (a * b).sum(at::kFloat) * (a * b);
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, SanitizeNames_CUDA) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cuda:0),
%1 : Float(5, 3, strides=[3, 1], device=cuda:0)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%4))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
graph->inputs().at(0)->setDebugName("aten::add:");
graph->inputs().at(1)->setDebugName("aten::add_");
TensorExprKernel k(graph);
auto a = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
auto ref = a * (a * b);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, SanitizeConstants_CUDA) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cuda:0)):
%none : NoneType = prim::Constant()
%size : int = prim::Constant[value=16]()
%sizes : int[] = prim::ListConstruct(%size, %size)
%30 : Device = prim::Constant[value="cuda"]()
%y : Float(16, 16, strides=[16, 1], device=cuda:0) = aten::ones(%sizes, %none, %none, %30, %none)
%z : Float(16, 16, strides=[16, 1], device=cuda:0) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we insert a call to
// aten::ones and then const-prop it
ConstantPropagation(graph);
// We set the name of the constant to include special characters that are
// not allowed. This should be fixed by the sanitizer in TensorExprKernel.
graph->nodes().front()->output()->setDebugName("illegal.name");
// Check if we have a constant node with illegal name in the graph.
auto const_node = graph->nodes().front();
ASSERT_EQ(const_node->kind(), prim::Constant);
ASSERT_NE(const_node->output()->debugName().find('.'), std::string::npos);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCUDA).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::ones({16, 16}, TensorOptions(kCUDA).dtype(at::kFloat));
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, ConstantTensors) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%size : int = prim::Constant[value=16]()
%sizes : int[] = prim::ListConstruct(%size, %size)
%y : Float(16, 16, strides=[16, 1], device=cpu) = aten::ones(%sizes, %none, %none, %none, %none)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we insert a call to
// aten::ones and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::ones({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, ConstantTensorsNonContiguous) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%dtype : int = prim::Constant[value=6]()
%c0 : int = prim::Constant[value=0]()
%c256 : int = prim::Constant[value=256]()
%c16 : int = prim::Constant[value=16]()
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
%sizes : int[] = prim::ListConstruct(%c16, %c16)
%y_t : Tensor = aten::view(%y_flat, %sizes)
%y : Tensor = aten::t(%y_t)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we generate several aten
// calls to produce non-contiguos constant tensor and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::arange(0, 256, TensorOptions(kCPU).dtype(at::kFloat))
.view({16, 16})
.t();
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, RunFast) {
#ifdef TORCH_ENABLE_LLVM
// TODO: Implement call_raw in IREval and remove the ifdef
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
k.runFast({a.data_ptr(), b.data_ptr()}, {o.data_ptr()});
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, RunWithAllocatedOutputs) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> args = {o, a, b};
std::vector<IValue> stack = fmap<IValue>(args);
k.runWithAllocatedOutputs(stack);
for (size_t i = 0; i < 5 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, CodegenInspection) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%dtype : int = prim::Constant[value=6]()
%c0 : int = prim::Constant[value=0]()
%c256 : int = prim::Constant[value=256]()
%c16 : int = prim::Constant[value=16]()
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
%sizes : int[] = prim::ListConstruct(%c16, %c16)
%y_t : Tensor = aten::view(%y_flat, %sizes)
%y : Tensor = aten::t(%y_t)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we generate several aten
// calls to produce non-contiguos constant tensor and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
// Check that we could retrieve generated assembly
auto asm_str = k.getCodeText("asm");
const std::string& asm_verification_pattern =
R"ASM(
# CHECK: .text
# CHECK: retq)ASM";
torch::jit::testing::FileCheck().run(asm_verification_pattern, asm_str);
// Check that we could retrieve info about codegen parameters
auto constants = k.getConstantDescriptors();
auto buf_args = k.getBufferArgs();
// Expected buf args: [input0, output0, constant0]
ASSERT_EQ(buf_args.size(), 3);
ASSERT_EQ(constants.size(), 1);
ASSERT_TRUE(
!buf_args[0].isVar() && !buf_args[1].isVar() && !buf_args[2].isVar());
#endif
}
Tensor lowerNanToNum(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
auto input_buf = c10::get<BufHandle>(inputs[0]);
auto e = Compute(
"custom_nan_to_num",
outputShape,
outputStrides,
[&](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
auto load = input_buf.load(indices);
return IfThenElse::make(Cast::make(kBool, isnan(load)), 0.0f, load);
});
return e;
}
TEST_F(Kernel, CustomLowering) {
const auto graph_string = R"IR(
graph(%x : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu)):
%none : NoneType = prim::Constant()
%y : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::nan_to_num(%x, %none, %none, %none)
return (%y)
)IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
std::unordered_map<c10::Symbol, NNCLoweringFunction> lowerings = {
{aten::nan_to_num, lowerNanToNum}};
TensorExprKernel k(graph, lowerings);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Check that our custom lowering is actually used
torch::jit::testing::FileCheck().check("custom_nan_to_num")->run(oss.str());
torch::jit::testing::FileCheck().check("isnan")->run(oss.str());
}
TEST_F(Kernel, Vectorize) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(100, 16, strides=[16, 1], device=cpu),
%1 : Float(100, 16, strides=[16, 1], device=cpu)):
%2 : Float(100, 16, strides=[16, 1]) = aten::mul(%0, %1)
%3 : Float(100, 16, strides=[16, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern = R"IR(# CHECK: Ramp)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 100 * 16; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
// TODO: To vectorize loopnest for 100x3 case, we need to flatten loops first.
TEST_F(Kernel, DISABLED_FlattenVectorize) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(100, 3, strides=[3, 1], device=cpu),
%1 : Float(100, 3, strides=[3, 1], device=cpu)):
%2 : Float(100, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(100, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern = R"IR(# CHECK: Ramp)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 100 * 3; i++) {
TORCH_CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, Strided1dWithinBounds) {
auto ir = R"IR(
graph(%0 : Float(3, strides=[1], device=cpu),
%1 : Float(3, strides=[2], device=cpu)):
%2 : int = prim::Constant[value=1]()
%3 : Float(3, strides=[1]) = aten::add(%0, %1, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
auto a = at::rand({3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2)});
auto expect = a + b;
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
for (size_t i = 0; i < 3; ++i) {
TORCH_CHECK_EQ(
((float*)output.data_ptr())[i], ((float*)expect.data_ptr())[i]);
}
}
TEST_F(Kernel, InputAsOutput) {
const auto graph_string = R"IR(
graph(%x : Float(5, 3, strides=[3, 1], device=cpu),
%y : Float(5, 3, strides=[1, 5], device=cpu)):
return (%x, %y))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto x = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto y =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {x, y};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
CHECK(at::allclose(x, stack[0].toTensor()));
CHECK(at::allclose(y, stack[1].toTensor()));
}
TEST_F(Kernel, ScalarOut) {
auto ir = R"IR(
graph(%x : int, %y : int):
%z : int = aten::mul(%x, %y)
%r : int = aten::mul(%z, %x)
return (%r, %z))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Verify the generated IR. We expect to see a scalar variable (Let) followed
// by a store to a 0-dim buffer.
const std::string& verification_pattern = R"IR(
# CHECK: int64_t
# CHECK-NEXT: [0ll] =
# CHECK-NEXT: int64_t
# CHECK-NEXT: [0ll] =
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
int64_t x = 2, y = 3, r = 0, z = 0;
// Verify that TEK::runFast works correctly with scalar outputs
std::vector<void*> inputs = {&x, &y};
std::vector<void*> outputs = {&r, &z};
k.runFast(inputs, outputs);
TORCH_CHECK_EQ(z, x * y);
TORCH_CHECK_EQ(r, z * x);
// Verify that TEK::run works correctly with scalar outputs
std::vector<IValue> stack = {x, y};
k.run(stack);
TORCH_CHECK_EQ(stack[0], x * y * x);
TORCH_CHECK_EQ(stack[1], x * y);
}
TEST_F(Kernel, ScalarTensorOut) {
auto ir = R"IR(
graph(%x : int,
%xt : Long(3, strides=[1], device=cpu),
%y : int,
%yt : Long(3, strides=[1], device=cpu)):
%z : int = aten::mul(%x, %y)
%r : int = aten::mul(%z, %x)
%zt : Long(3, strides=[1], device=cpu) = aten::mul(%xt, %y)
%rt : Long(3, strides=[1], device=cpu) = aten::mul(%zt, %xt)
return (%r, %rt, %z, %zt))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
int64_t x = 2, y = 3, r = 0, z = 0;
auto xt = at::ones({3}, TensorOptions(kCPU).dtype(at::kLong)) * 2;
auto yt = at::ones({3}, TensorOptions(kCPU).dtype(at::kLong)) * 3;
auto zt = at::zeros({3}, TensorOptions(kCPU).dtype(at::kLong));
auto rt = at::zeros({3}, TensorOptions(kCPU).dtype(at::kLong));
// Verify that TEK::runFast works correctly with mixed scalar and tensor
// inputs/utputs
std::vector<void*> inputs = {&x, xt.data_ptr(), &y, yt.data_ptr()};
std::vector<void*> outputs = {&r, rt.data_ptr(), &z, zt.data_ptr()};
k.runFast(inputs, outputs);
TORCH_CHECK_EQ(z, x * y);
TORCH_CHECK_EQ(r, z * x);
ASSERT_TRUE(at::equal(zt, xt * yt));
ASSERT_TRUE(at::equal(rt, zt * xt));
// Verify that TEK::run works correctly with mixed scalar and tensor
// inputs/utputs
std::vector<IValue> stack = {x, xt, y, yt};
k.run(stack);
TORCH_CHECK_EQ(stack[0], x * y * x);
ASSERT_TRUE(at::equal(stack[1].toTensor(), xt * yt * xt));
TORCH_CHECK_EQ(stack[2], x * y);
ASSERT_TRUE(at::equal(stack[3].toTensor(), xt * yt));
}
TEST_F(Kernel, FuseLoopsWithVariableBounds) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), 3, SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), 7, SS(-3), requires_grad=0, device=cpu),
%c : Float(SS(-2), 9, SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(SS(-2), 19, SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->inputs().at(2)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim1, int dim2) {
auto a =
at::rand({dim1, 3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim1, 7, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto c =
at::rand({dim1, 9, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<IValue> stack =
fmap<IValue>(std::vector<at::Tensor>({a, b, c}));
stack.emplace_back(dim1);
stack.emplace_back(dim2);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
TEST_F(Kernel, FuseLoopsWithVariableConcatDim) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%c : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int,
%SS_4 : int,
%SS_5 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(SS(-2), SS(-5), SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3, -4, -5};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->inputs().at(2)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim1, int dim2, int dim3) {
auto a =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto c =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<IValue> stack =
fmap<IValue>(std::vector<at::Tensor>({a, b, c}));
stack.emplace_back(dim1);
stack.emplace_back(dim2);
stack.emplace_back(dim3);
stack.emplace_back(3 * dim3);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20, 15);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
TEST_F(Kernel, DoNotFuseLoopsWithMismatchingVariableDims) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), SS(-5), SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int,
%SS_4 : int,
%SS_5 : int,
%SS_6 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(SS(-2), SS(-6), SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3, -4, -5, -6};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t j
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim2, int dim3, int dim4, int dim5) {
auto a =
at::rand({dim2, dim4, dim3}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim2, dim5, dim3}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b}, 1);
std::vector<IValue> stack = fmap<IValue>(std::vector<at::Tensor>({a, b}));
stack.emplace_back(dim2);
stack.emplace_back(dim3);
stack.emplace_back(dim4);
stack.emplace_back(dim5);
stack.emplace_back(dim4 + dim5);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20, 15, 8);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
} // namespace jit
} // namespace torch