pytorch/caffe2/operators/quant_decode_op.h
Will Constable 4f34cd6d1e Replace all CHECK_ and DCHECK_ with TORCH_* macros (#82032)
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases.

All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed.
c10/util/logging_is_not_google_glog.h
c10/util/logging_is_google_glog.h

Fixes https://github.com/pytorch/pytorch/issues/81415

cc @miladm @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032
Approved by: https://github.com/soumith, https://github.com/miladm
2022-07-26 01:20:44 +00:00

173 lines
5.3 KiB
C++

#ifndef QUANT_DECODE_OP_H_
#define QUANT_DECODE_OP_H_
#include <c10/util/irange.h>
#include <c10/util/typeid.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
namespace {
template <class CodebookT, class CodeT>
void Decode(
const Tensor& codebook,
const Tensor& codes,
/* optional */ const Tensor* const decoded_grad,
Tensor* const output,
bool resizeOnly) {
CAFFE_ENFORCE(codebook.IsType<CodebookT>());
auto* cb_ptr = codebook.data<CodebookT>();
int cb_size = codebook.numel();
CAFFE_ENFORCE(codes.IsType<CodeT>());
auto* code_ptr = codes.data<CodeT>();
if (decoded_grad == nullptr) {
// Forward pass: decode and store codebook values in output.
output->ResizeLike(codes);
auto* out_ptr = output->template mutable_data<CodebookT>();
if (resizeOnly) {
return;
}
int sz = output->numel();
for (C10_UNUSED const auto i : c10::irange(sz)) {
TORCH_DCHECK_LE(*code_ptr, cb_size);
*out_ptr++ = cb_ptr[*code_ptr++];
}
} else {
// Backward pass: decode and accumulate gradient w.r.t. codebook values.
CAFFE_ENFORCE_EQ(codes.numel(), decoded_grad->numel());
auto* gradient_ptr = decoded_grad->data<CodebookT>();
auto* const gradient_end = gradient_ptr + decoded_grad->numel();
CAFFE_ENFORCE_EQ(cb_size, output->numel());
auto* out_ptr = output->template mutable_data<CodebookT>();
while (gradient_ptr < gradient_end) {
TORCH_DCHECK_LE(*code_ptr, cb_size);
out_ptr[*code_ptr++] += *gradient_ptr++;
}
}
}
#define REGISTER_DECODER(codebookType, codesType) \
{ \
{TypeMeta::Id<codebookType>(), TypeMeta::Id<codesType>()}, \
[](const Tensor& codebook_, \
const Tensor& codes_, \
const Tensor* gradient_, \
Tensor* outDecoded_, \
bool resizeOnly_) { \
Decode<codebookType, codesType>( \
codebook_, codes_, gradient_, outDecoded_, resizeOnly_); \
} \
}
inline void DecodeGeneral(
const Tensor& codebook,
const Tensor& codes,
const Tensor* gradient,
Tensor* outDecoded,
bool resizeOnly) {
const static std::map<
std::pair<TypeIdentifier, TypeIdentifier>,
std::function<void(
const Tensor& codebook,
const Tensor& codes,
const Tensor* gradient,
Tensor* outDecoded,
bool resizeOnly)>>
gDecoderMapper = {REGISTER_DECODER(float, uint8_t),
REGISTER_DECODER(float, uint16_t),
REGISTER_DECODER(float, int32_t)};
gDecoderMapper.at({codebook.dtype().id(), codes.dtype().id()})(
codebook, codes, gradient, outDecoded, resizeOnly);
}
} // namespace
// Decode tensors based on given codebook,
// The codebook is generated by model_quantize.py
enum class QuantDecodeRunTy {
RUN_ALWAYS,
RUN_ONCE,
};
template <QuantDecodeRunTy QuantDecodeRun>
class QuantDecodeOp final : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
template <class... Args>
explicit QuantDecodeOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...) {}
~QuantDecodeOp() {}
bool RunOnDevice() override {
CAFFE_ENFORCE_GT(InputSize(), 1);
// first input is the codebook
CAFFE_ENFORCE_EQ(InputSize(), OutputSize() + 1);
const auto& codebook = Input(0);
CAFFE_ENFORCE(codebook.template IsType<float>(), codebook.dtype().name());
for (const auto i : c10::irange(OutputSize())) {
auto& ci = Input(i + 1);
auto* co = Output(i);
DecodeGeneral(
codebook,
ci,
nullptr,
co,
/*resizeOnly=*/QuantDecodeRun == QuantDecodeRunTy::RUN_ONCE &&
hasRun_);
}
hasRun_ = true;
return true;
}
private:
bool hasRun_{false};
};
class QuantDecodeGradientOp final : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
template <class... Args>
explicit QuantDecodeGradientOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...) {}
~QuantDecodeGradientOp() {}
bool RunOnDevice() override {
// Inputs: 1 codebook, n tensors of codes, and n corresponding gradients.
CAFFE_ENFORCE(InputSize() >= 3 && InputSize() % 2 == 1);
const int num_code_tensors = (InputSize() - 1) / 2;
CAFFE_ENFORCE_EQ(OutputSize(), 1);
const auto& codebook = Input(0);
CAFFE_ENFORCE(codebook.template IsType<float>(), codebook.dtype().name());
auto* gradient = Output(0, codebook.sizes(), at::dtype<float>());
auto* gradient_ptr = gradient->template mutable_data<float>();
std::fill(gradient_ptr, gradient_ptr + gradient->numel(), 0);
for (const auto i : c10::irange(num_code_tensors)) {
auto& codes_i = Input(i + 1);
auto& output_gradient_i = Input(i + num_code_tensors + 1);
DecodeGeneral(codebook, codes_i, &output_gradient_i, gradient, false);
}
return true;
}
};
} // namespace caffe2
#endif // QUANT_DECODE_OP_H_