mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
- Uses state dict / load state dict hooks to ensure that modules wrapped with `CheckpointWrapper` can be loaded into non-checkpointed wrapped module. This is because a training run can use activation checkpointing, then we can recover `state_dict`, and a future run may not want to wrap modules with activation checkpointing or decide to change activation checkpoint wrapping structure. To support this, we add hooks to remove / add the relevant prefix as needed. Tests are added to ensure we can load into CheckpointWrapper module as well as local module from CheckpointWrapper-wrapped module. state_dict with FSDP is also verified. Pull Request resolved: https://github.com/pytorch/pytorch/pull/77224 Approved by: https://github.com/zhaojuanmao
70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
from collections import OrderedDict
|
|
from typing import Any, Callable, Dict, List, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from torch.nn.utils.rnn import PackedSequence
|
|
|
|
"""Useful functions to deal with tensor types with other python container types."""
|
|
|
|
def _contains_batchnorm(module):
|
|
return any(
|
|
isinstance(mod, _BatchNorm) for mod in module.modules()
|
|
)
|
|
|
|
def _override_batchnorm_mixed_precision(module):
|
|
for mod in module.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
mod._wrap_overrides = {"mixed_precision": None} # type: ignore[assignment]
|
|
|
|
def _apply_to_tensors(
|
|
fn: Callable, container: Union[torch.Tensor, Dict, List, Tuple, Set, OrderedDict, PackedSequence]
|
|
) -> Any:
|
|
"""Recursively apply to all tensor in different kinds of container types."""
|
|
|
|
def apply(x: Union[torch.Tensor, Dict, List, Tuple, Set, OrderedDict, PackedSequence]) -> Any:
|
|
if torch.is_tensor(x):
|
|
return fn(x)
|
|
elif isinstance(x, OrderedDict):
|
|
od = x.__class__()
|
|
for key, value in x.items():
|
|
od[key] = apply(value)
|
|
return od
|
|
elif isinstance(x, PackedSequence):
|
|
apply(x.data)
|
|
return x
|
|
elif isinstance(x, dict):
|
|
return {key: apply(value) for key, value in x.items()}
|
|
elif isinstance(x, (list, tuple, set)):
|
|
return type(x)(apply(el) for el in x)
|
|
else:
|
|
return x
|
|
|
|
return apply(container)
|
|
|
|
def _apply_to_modules(
|
|
root_module: torch.nn.Module,
|
|
module_fn: Callable,
|
|
return_fn: Callable,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Performs a pre-order traversal of the modules in the hierarchy rooted at
|
|
``root_module``, applying ``module_fn`` at each module and finally
|
|
returning a value using ``return_fn``. The traversal constructs the full
|
|
module prefix name (e.g. "module.submodule." just like in model state dict)
|
|
and makes that available to ``module_fn``.
|
|
"""
|
|
def f(module: torch.nn.Module, prefix: str, *args, **kwargs):
|
|
# Call the module function before recursing over children (pre-order)
|
|
module_fn(module, prefix, *args, **kwargs)
|
|
for submodule_name, submodule in module.named_children():
|
|
if submodule is not None:
|
|
new_prefix = prefix + submodule_name + "."
|
|
f(submodule, new_prefix, *args, **kwargs)
|
|
|
|
f(root_module, "", *args, **kwargs)
|
|
return return_fn(*args, **kwargs)
|