mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66744 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: ngimel Differential Revision: D31705358 fbshipit-source-id: d6ea350cbaa8f452fc78f238160e5374be637a48
72 lines
2.2 KiB
C++
72 lines
2.2 KiB
C++
#include <c10/util/irange.h>
|
|
#include <torch/script.h>
|
|
|
|
#include "op.h"
|
|
|
|
#include <cstddef>
|
|
#include <string>
|
|
|
|
torch::List<torch::Tensor> custom_op(
|
|
torch::Tensor tensor,
|
|
double scalar,
|
|
int64_t repeat) {
|
|
torch::List<torch::Tensor> output;
|
|
output.reserve(repeat);
|
|
for (const auto i : c10::irange(repeat)) {
|
|
(void)i; // Suppress unused variable warning
|
|
output.push_back(tensor * scalar);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
int64_t custom_op2(std::string s1, std::string s2) {
|
|
return s1.compare(s2);
|
|
}
|
|
|
|
struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> {
|
|
static torch::Tensor forward(
|
|
torch::autograd::AutogradContext* ctx,
|
|
torch::Tensor var1,
|
|
int64_t mul,
|
|
torch::Tensor var2,
|
|
c10::optional<torch::Tensor> var3) {
|
|
ctx->saved_data["mul"] = mul;
|
|
ctx->saved_data["var3_has_value"] = var3.has_value();
|
|
ctx->save_for_backward({var1, var2});
|
|
if (var3) {
|
|
return var1 + mul * var2 + var1 * var2 + var3.value();
|
|
}
|
|
return var1 + mul*var2 + var1*var2;
|
|
}
|
|
|
|
static torch::autograd::variable_list backward(torch::autograd::AutogradContext *ctx, torch::autograd::variable_list grad_output) {
|
|
int mul = ctx->saved_data["mul"].toInt();
|
|
bool var3_has_value = ctx->saved_data["var3_has_value"].toBool();
|
|
auto saved = ctx->get_saved_variables();
|
|
auto var1 = saved[0];
|
|
auto var2 = saved[1];
|
|
auto var3_grad = var3_has_value ? grad_output[0] : torch::Tensor();
|
|
torch::autograd::variable_list output = {
|
|
grad_output[0] + grad_output[0] * var2,
|
|
torch::Tensor(),
|
|
grad_output[0] * mul + grad_output[0] * var1,
|
|
var3_grad};
|
|
return output;
|
|
}
|
|
};
|
|
|
|
torch::Tensor custom_op_with_autograd(
|
|
torch::Tensor var1,
|
|
int64_t mul,
|
|
torch::Tensor var2,
|
|
c10::optional<torch::Tensor> var3) {
|
|
return CustomOpAutogradFunction::apply(var1, mul, var2, var3);
|
|
}
|
|
|
|
TORCH_LIBRARY_FRAGMENT(custom, m) {
|
|
m.def("op", custom_op);
|
|
m.def("op2", custom_op2);
|
|
m.def("op_with_defaults(Tensor tensor, float scalar = 1, int repeat = 1) -> Tensor[]", custom_op);
|
|
m.def("op_with_autograd(Tensor var1, int mul, Tensor var2, Tensor? var3=None) -> Tensor", custom_op_with_autograd);
|
|
}
|