mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
123 lines
2.9 KiB
C++
123 lines
2.9 KiB
C++
#include "caffe2/operators/softplus_op.h"
|
|
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
bool SoftplusOp<float, CPUContext>::RunOnDevice() {
|
|
auto& X = Input(0);
|
|
|
|
auto* Y = Output(0, X.sizes(), at::dtype<float>());
|
|
|
|
EigenVectorMap<float>(Y->template mutable_data<float>(), X.numel()) =
|
|
(ConstEigenVectorMap<float>(X.data<float>(), X.numel()).array().exp() +
|
|
1.0f)
|
|
.log();
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
bool SoftplusGradientOp<float, CPUContext>::RunOnDevice() {
|
|
auto& Y = Input(0);
|
|
auto& dY = Input(1);
|
|
|
|
DCHECK_EQ(dY.numel(), Y.numel());
|
|
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
|
|
|
|
const float* Ydata = Y.data<float>();
|
|
const float* dYdata = dY.data<float>();
|
|
float* dXdata = dX->template mutable_data<float>();
|
|
EigenVectorArrayMap<float> dXvec(dXdata, dX->numel());
|
|
ConstEigenVectorArrayMap<float> Yvec(Ydata, Y.numel());
|
|
ConstEigenVectorArrayMap<float> dYvec(dYdata, dY.numel());
|
|
dXvec = dYvec * (1.0 - (-Yvec).exp());
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(Softplus, SoftplusOp<float, CPUContext>);
|
|
REGISTER_CPU_OPERATOR(SoftplusGradient, SoftplusGradientOp<float, CPUContext>);
|
|
|
|
// Input: X, output: Y
|
|
OPERATOR_SCHEMA(Softplus)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{0, 0}})
|
|
.IdenticalTypeAndShape()
|
|
.SetDoc(R"DOC(
|
|
Softplus takes one input data tensor $X$ and produces one output data tensor $Y,$ where the softplus function, $y = ln(e^x + 1)$, is applied to $X$ elementwise.
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/softplus_op.h
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/softplus_op.cc
|
|
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"Softplus",
|
|
["X"],
|
|
["Y"],
|
|
)
|
|
|
|
workspace.FeedBlob("X", np.random.randn(3, 3).astype(np.float32))
|
|
print("X:\n", workspace.FetchBlob("X"), "\n")
|
|
|
|
workspace.RunOperatorOnce(op)
|
|
print("Y:\n", workspace.FetchBlob("Y"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
X:
|
|
[[-0.5380011 0.65190786 0.55673236]
|
|
[-0.16272168 0.5451048 0.30880353]
|
|
[-0.76606876 -0.6238556 -0.40444514]]
|
|
|
|
Y:
|
|
[[0.4598992 1.0713093 1.0097669 ]
|
|
[0.61509246 1.0023911 0.8594219 ]
|
|
[0.38174385 0.42909983 0.5112337 ]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Input(0, "X", "Input data blob to be operated on.")
|
|
.Output(0, "Y", "Output data blob with same shape as input.")
|
|
.InheritOnnxSchema();
|
|
|
|
// Input: Y, dY, output: dX
|
|
OPERATOR_SCHEMA(SoftplusGradient)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{1, 0}});
|
|
|
|
class GetSoftplusGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
"SoftplusGradient",
|
|
"",
|
|
vector<string>{O(0), GO(0)},
|
|
vector<string>{GI(0)});
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(Softplus, GetSoftplusGradient);
|
|
|
|
} // namespace caffe2
|