mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
92 lines
2.0 KiB
C++
92 lines
2.0 KiB
C++
#include "caffe2/operators/sigmoid_op.h"
|
|
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool SigmoidFunctor<CPUContext>::
|
|
operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const {
|
|
EigenVectorArrayMap<T>(Y, N) =
|
|
T(1) / (T(1) + (-ConstEigenVectorArrayMap<T>(X, N)).exp());
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(
|
|
Sigmoid,
|
|
UnaryElementwiseOp<
|
|
TensorTypes<float>,
|
|
CPUContext,
|
|
SigmoidFunctor<CPUContext>>);
|
|
|
|
// Input: X, output: Y
|
|
OPERATOR_SCHEMA(Sigmoid)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{0, 0}})
|
|
.IdenticalTypeAndShape()
|
|
.SetDoc(R"DOC(
|
|
Apply the Sigmoid function element-wise to the input tensor. This is often used
|
|
as a non-linear activation function in a neural network. The sigmoid function is
|
|
defined as:
|
|
|
|
$$Sigmoid(x) = \frac{1}{1+\exp(-x)}$$
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sigmoid_op.cc
|
|
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"Sigmoid",
|
|
["X"],
|
|
["Y"]
|
|
)
|
|
|
|
workspace.FeedBlob("X", np.random.randn(5).astype(np.float32))
|
|
print("input:", workspace.FetchBlob("X"))
|
|
workspace.RunOperatorOnce(op)
|
|
print("sigmoid:", workspace.FetchBlob("Y"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
input: [ 1.5744036 0.31632107 1.7842269 1.4450722 -2.1726978 ]
|
|
sigmoid: [0.8284105 0.57842743 0.85621804 0.80923885 0.10222916]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
)DOC")
|
|
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
|
|
.Output(0, "Y", "*(type: Tensor`<float>`)* Output tensor.")
|
|
.InheritOnnxSchema();
|
|
// Input: Y, dY, output: dX
|
|
OPERATOR_SCHEMA(SigmoidGradient)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{1, 0}})
|
|
.IdenticalTypeAndShapeOfInput(1)
|
|
.SetDoc(R"DOC(
|
|
SigmoidGradient takes both Y and dY and uses this to update dX according to the
|
|
chain rule and derivatives of the sigmoid function.
|
|
)DOC");
|
|
|
|
} // namespace caffe2
|