mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
172 lines
4.0 KiB
C++
172 lines
4.0 KiB
C++
#include "caffe2/operators/relu_op.h"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <string>
|
|
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool ReluFunctor<CPUContext>::
|
|
operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const {
|
|
EigenVectorMap<T>(Y, N) = ConstEigenVectorMap<float>(X, N).cwiseMax(T(0));
|
|
return true;
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_ACCELERATE
|
|
|
|
template <>
|
|
template <>
|
|
bool ReluFunctor<CPUContext>::operator()<float>(
|
|
const int N,
|
|
const float* X,
|
|
float* Y,
|
|
CPUContext* /* context */) const {
|
|
const float zero = 0.0f;
|
|
vDSP_vthres(X, 1, &zero, Y, 1, N);
|
|
return true;
|
|
}
|
|
|
|
#endif // CAFFE2_USE_ACCELERATE
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool ReluGradientFunctor<CPUContext>::Forward(
|
|
const std::vector<int>& Y_dims,
|
|
const std::vector<int>& /* dY_dims */,
|
|
const T* Y,
|
|
const T* dY,
|
|
T* dX,
|
|
CPUContext* /* context */) const {
|
|
const int size = std::accumulate(
|
|
// NOLINTNEXTLINE(modernize-use-transparent-functors)
|
|
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
|
|
EigenVectorArrayMap<T>(dX, size) =
|
|
(ConstEigenVectorArrayMap<T>(Y, size) > T(0))
|
|
.select(ConstEigenVectorArrayMap<T>(dY, size), T(0));
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
OpSchema::Cost CostInferenceForRelu(
|
|
const OperatorDef& def,
|
|
const vector<TensorShape>& in) {
|
|
struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in);
|
|
cost.params_bytes = 0;
|
|
return cost;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
REGISTER_CPU_OPERATOR(
|
|
Relu,
|
|
UnaryElementwiseOp<
|
|
TensorTypes<float>,
|
|
CPUContext,
|
|
ReluFunctor<CPUContext>>);
|
|
REGISTER_CPU_GRADIENT_OPERATOR(
|
|
ReluGradient,
|
|
BinaryElementwiseOp<
|
|
TensorTypes<float>,
|
|
CPUContext,
|
|
ReluGradientFunctor<CPUContext>>);
|
|
|
|
// Input: X, output: Y
|
|
OPERATOR_SCHEMA(Relu)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{0, 0}})
|
|
.CostInferenceFunction(CostInferenceForRelu)
|
|
.IdenticalTypeAndShape()
|
|
.SetDoc(R"DOC(
|
|
Applies rectified linear unit operation to the input data element-wise. The Relu operation takes one input $X$, produces one output $Y$, and is defined as:
|
|
|
|
$$Y = max(0,X)$$
|
|
|
|
Github Links:
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.h
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.cc
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"Relu",
|
|
["X"],
|
|
["Y"]
|
|
)
|
|
|
|
workspace.FeedBlob("X", np.random.randn(4, 4).astype(np.float32)) // NCHW
|
|
print("X:\n", workspace.FetchBlob("X"), "\n")
|
|
|
|
workspace.RunOperatorOnce(op)
|
|
print("Y:\n", workspace.FetchBlob("Y"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
X:
|
|
[[-1.4655551 0.64575136 0.7921748 0.4150579 ]
|
|
[ 0.41085166 -0.2837964 0.9881425 -1.9300346 ]
|
|
[ 0.39705405 0.44639114 0.9940703 0.2926532 ]
|
|
[-0.6726489 0.01330667 1.101319 0.33858967]]
|
|
|
|
Y:
|
|
[[0. 0.64575136 0.7921748 0.4150579 ]
|
|
[0.41085166 0. 0.9881425 0. ]
|
|
[0.39705405 0.44639114 0.9940703 0.2926532 ]
|
|
[0. 0.01330667 1.101319 0.33858967]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
)DOC")
|
|
.Input(0, "X", "1D input tensor")
|
|
.Output(0, "Y", "1D output tensor with same shape as input")
|
|
.InheritOnnxSchema();
|
|
|
|
// Input: Y, dY, output: dX
|
|
GRADIENT_OPERATOR_SCHEMA(ReluGradient)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.AllowInplace({{1, 0}})
|
|
.IdenticalTypeAndShapeOfInput(1)
|
|
.SetDoc(R"DOC(
|
|
ReluGradient takes both Y and dY and uses this to update dX according to the
|
|
chain rule and derivatives of the rectified linear function.
|
|
)DOC");
|
|
|
|
namespace {
|
|
|
|
class GetReluGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
std::vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
def_.type() + "Gradient",
|
|
"",
|
|
std::vector<std::string>{O(0), GO(0)},
|
|
std::vector<std::string>{GI(0)});
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
REGISTER_GRADIENT(Relu, GetReluGradient);
|
|
|
|
} // namespace caffe2
|