mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
53 lines
1.8 KiB
C++
53 lines
1.8 KiB
C++
#include "lstm_unit_op.h"
|
|
|
|
namespace caffe2 {
|
|
REGISTER_CPU_OPERATOR(LSTMUnit, LSTMUnitOp<CPUContext>);
|
|
OPERATOR_SCHEMA(LSTMUnit)
|
|
.NumInputs(4, 5)
|
|
.NumOutputs(2)
|
|
.SetDoc(R"DOC(
|
|
LSTMUnit computes the activations of a standard LSTM (without peephole
|
|
connections), in a sequence-length aware fashion.
|
|
|
|
Concretely, given the (fused) inputs X (TxNxD), the previous cell
|
|
state (NxD), and the sequence lengths (N), computes the LSTM
|
|
activations, avoiding computation if the input is invalid (as in, the
|
|
value at X{t][n] >= seqLengths[n].
|
|
|
|
)DOC")
|
|
.Arg("forget_bias", "Bias term to add in while calculating forget gate")
|
|
.Arg(
|
|
"sequence_lengths",
|
|
"When false, the sequence lengths input is left out, "
|
|
"and all following inputs are shifted left by one.");
|
|
REGISTER_CPU_OPERATOR(LSTMUnitGradient, LSTMUnitGradientOp<CPUContext>);
|
|
OPERATOR_SCHEMA(LSTMUnitGradient)
|
|
.NumInputs(8, 9)
|
|
.NumOutputs(3)
|
|
.Arg(
|
|
"sequence_lengths",
|
|
"When false, the sequence lengths input is left out, "
|
|
"and all following inputs are shifted left by one.");
|
|
|
|
class GetLSTMUnitGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
if (GetFlagArgument(def_, "sequence_lengths", true)) {
|
|
return SingleGradientDef(
|
|
"LSTMUnitGradient",
|
|
"",
|
|
vector<string>{
|
|
I(0), I(1), I(2), I(3), I(4), O(0), O(1), GO(0), GO(1)},
|
|
vector<string>{GI(0), GI(1), GI(2)});
|
|
} else {
|
|
return SingleGradientDef(
|
|
"LSTMUnitGradient",
|
|
"",
|
|
vector<string>{I(0), I(1), I(2), I(3), O(0), O(1), GO(0), GO(1)},
|
|
vector<string>{GI(0), GI(1), GI(2)});
|
|
}
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(LSTMUnit, GetLSTMUnitGradient);
|
|
}
|