mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
78 lines
1.8 KiB
C++
78 lines
1.8 KiB
C++
#include "caffe2/operators/loss_op.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
REGISTER_CPU_OPERATOR(AveragedLoss, AveragedLoss<float, CPUContext>);
|
|
REGISTER_CPU_OPERATOR(AveragedLossGradient,
|
|
AveragedLossGradient<float, CPUContext>);
|
|
|
|
OPERATOR_SCHEMA(AveragedLoss)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.ScalarType(TensorProto::FLOAT)
|
|
.SetDoc(R"DOC(
|
|
The *AveragedLoss* op takes a single 1-D input tensor *input* and returns a single output float value *output*. The output represents the average of the values in *input*. This op is commonly used for averaging losses, hence the name, however it does not exclusively operate on losses.
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.h
|
|
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.cc
|
|
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"AveragedLoss",
|
|
["input"],
|
|
["output"],
|
|
)
|
|
|
|
workspace.FeedBlob("input", np.array([8, 10, 12]).astype(np.float32))
|
|
print("input:\n", workspace.FetchBlob("input"))
|
|
|
|
workspace.RunOperatorOnce(op)
|
|
print("output: \n", workspace.FetchBlob("output"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
input:
|
|
[ 8. 10. 12.]
|
|
output:
|
|
10.0
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
)DOC")
|
|
.Input(0, "input", "The input data as Tensor")
|
|
.Output(0, "output", "The output tensor of size 1 containing the averaged value.");
|
|
|
|
OPERATOR_SCHEMA(AveragedLossGradient).NumInputs(2).NumOutputs(1);
|
|
|
|
class GetAveragedLossGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
"AveragedLossGradient", "",
|
|
vector<string>{I(0), GO(0)},
|
|
vector<string>{GI(0)});
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(AveragedLoss, GetAveragedLossGradient);
|
|
|
|
} // namespace caffe2
|