mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66742 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D31705366 fbshipit-source-id: be58222426c192406a7f93c21582c3f6f2082401
428 lines
14 KiB
C++
428 lines
14 KiB
C++
#ifndef CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
|
|
#define CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
|
|
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <unordered_set>
|
|
|
|
|
|
#include <c10/util/irange.h>
|
|
#include <c10/util/string_view.h>
|
|
#include "caffe2/core/blob_serialization.h"
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/db.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/operators/load_save_op_util.h"
|
|
#include "caffe2/utils/math.h"
|
|
#include "caffe2/utils/proto_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
using db::Cursor;
|
|
using db::DB;
|
|
using db::Transaction;
|
|
|
|
template <class Context>
|
|
class DBExistsOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
explicit DBExistsOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws),
|
|
ws_(ws),
|
|
absolute_path_(
|
|
this->template GetSingleArgument<int>("absolute_path", false)),
|
|
db_name_(this->template GetSingleArgument<string>("db_name", "")),
|
|
db_type_(this->template GetSingleArgument<string>("db_type", "")) {}
|
|
|
|
bool RunOnDevice() override {
|
|
string full_db_name =
|
|
absolute_path_ ? db_name_ : (ws_->RootFolder() + "/" + db_name_);
|
|
auto* output = Output(0);
|
|
output->Resize();
|
|
bool* exists = output->template mutable_data<bool>();
|
|
|
|
*exists = caffe2::db::DBExists(db_type_, full_db_name);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
Workspace* ws_;
|
|
bool absolute_path_;
|
|
std::string db_name_;
|
|
std::string db_type_;
|
|
};
|
|
|
|
template <class Context>
|
|
class LoadOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
explicit LoadOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws),
|
|
ws_(ws),
|
|
absolute_path_(
|
|
this->template GetSingleArgument<int>("absolute_path", false)),
|
|
add_prefix_(this->template GetSingleArgument<string>("add_prefix", "")),
|
|
strip_prefix_(
|
|
this->template GetSingleArgument<string>("strip_prefix", "")),
|
|
db_name_(this->template GetSingleArgument<string>("db", "")),
|
|
db_names_(this->template GetRepeatedArgument<string>("dbs")),
|
|
db_type_(this->template GetSingleArgument<string>("db_type", "")),
|
|
db_options_(this->template GetSingleArgument<string>("db_options", "")),
|
|
keep_device_(this->template GetSingleArgument<int>("keep_device", 0)),
|
|
load_all_(this->template GetSingleArgument<int>("load_all", 0)),
|
|
allow_incomplete_(
|
|
this->template GetSingleArgument<bool>("allow_incomplete", false)),
|
|
blob_names_(
|
|
this->template GetRepeatedArgument<string>("source_blob_names")),
|
|
shape_(this->template GetRepeatedArgument<int64_t>("shape")) {
|
|
if (InputSize() == 0) {
|
|
CAFFE_ENFORCE_GT(db_type_.size(), 0, "Must specify a db type.");
|
|
if (db_names_.empty()) {
|
|
CAFFE_ENFORCE_GT(db_name_.size(), 0, "Must specify a db name.");
|
|
db_names_.push_back(db_name_);
|
|
db_name_ = "";
|
|
} else {
|
|
std::set<std::string> db_name_set;
|
|
for (const string& db_name : db_names_) {
|
|
CAFFE_ENFORCE_GT(db_name.size(), 0, "Db name should not be empty.");
|
|
CAFFE_ENFORCE(
|
|
db_name_set.insert(db_name).second,
|
|
"Duplicated db name: ",
|
|
db_name);
|
|
}
|
|
db_name_ = "";
|
|
}
|
|
}
|
|
CAFFE_ENFORCE(
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
blob_names_.empty() || blob_names_.size() == OutputSize(),
|
|
"Number of output blobs and source_blob_names mismatch.");
|
|
CAFFE_ENFORCE(
|
|
blob_names_.empty() || strip_prefix_.empty(),
|
|
"strip_prefix and source_blob_names are mutually exclusive.");
|
|
CAFFE_ENFORCE(
|
|
blob_names_.empty() || !load_all_,
|
|
"cannot load_all_ while using source_blob_names.");
|
|
if (!load_all_) {
|
|
// blob_names_ will be filled with ''source blob names'' in file/db
|
|
// if argument source_blob_names is not given, then blob_names_ is
|
|
// inferred from operator output
|
|
if (blob_names_.empty()) {
|
|
for (const string& name : operator_def.output()) {
|
|
blob_names_.push_back(name);
|
|
}
|
|
}
|
|
int idx = 0;
|
|
std::set<std::string> name_set;
|
|
for (const string& name : blob_names_) {
|
|
CAFFE_ENFORCE(
|
|
name_set.insert(name).second,
|
|
"Duplicated source blob name: ",
|
|
name);
|
|
output_indices_[name] = idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SetCurrentDevice(BlobProto* proto);
|
|
|
|
bool RunOnDevice() override {
|
|
int total_loaded_blobs = 0;
|
|
std::unordered_map<string, load_save_op_util::BlobState> blob_states;
|
|
if (InputSize() > 0) {
|
|
for (const auto i : c10::irange(InputSize())) {
|
|
const db::DBReader& reader = this->template Input<db::DBReader>(i);
|
|
extract(i, reader.cursor(), &blob_states, &total_loaded_blobs);
|
|
}
|
|
} else {
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
for (const auto i : c10::irange(db_names_.size())) {
|
|
string full_db_name = absolute_path_
|
|
? db_names_[i]
|
|
: (ws_->RootFolder() + "/" + db_names_[i]);
|
|
std::unique_ptr<DB> in_db(
|
|
caffe2::db::CreateDB(db_type_, full_db_name, caffe2::db::READ));
|
|
if (!db_options_.empty()) {
|
|
in_db->SetOptions(db_options_);
|
|
}
|
|
CAFFE_ENFORCE(
|
|
in_db.get(),
|
|
"Cannot find db implementation of type ",
|
|
db_type_,
|
|
" (while trying to open ",
|
|
full_db_name,
|
|
")");
|
|
std::unique_ptr<Cursor> cursor(in_db->NewCursor());
|
|
extract(i, cursor.get(), &blob_states, &total_loaded_blobs);
|
|
}
|
|
}
|
|
|
|
load_save_op_util::validateBlobStates(blob_states);
|
|
// Loaded all the needed blobs.
|
|
if (!load_all_ && total_loaded_blobs == OutputSize()) {
|
|
VLOG(1) << "Loaded " << total_loaded_blobs << " blobs fully from db(s)";
|
|
return true;
|
|
}
|
|
|
|
if (load_all_) {
|
|
for (const string& name : this->debug_def().output()) {
|
|
CAFFE_ENFORCE(
|
|
blob_states.count(name),
|
|
"Output blob name ",
|
|
name,
|
|
" does not exist in the db(s).");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Only loaded a subset of the blobs.
|
|
if (allow_incomplete_) {
|
|
VLOG(1) << "Loaded " << total_loaded_blobs << " blobs out of "
|
|
<< OutputSize() << " blobs from db(s).";
|
|
for (const auto& output_index : output_indices_) {
|
|
if (!blob_states.count(output_index.first)) {
|
|
const auto& blobName = output_index.first;
|
|
const auto* blob = ws_->GetBlob(output_index.first);
|
|
if (blob == nullptr || blob->GetRaw() == nullptr){
|
|
// If blob was not loaded in this op and
|
|
// it did not exist in the workspace before,
|
|
// remove it.
|
|
ws_->RemoveBlob(blobName);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (const string& output_name : this->debug_def().output()) {
|
|
if (blob_states.count(output_name) == 0) {
|
|
LOG(ERROR) << "Failed to load blob: " << output_name;
|
|
}
|
|
}
|
|
CAFFE_THROW(
|
|
"Expected to load ",
|
|
OutputSize(),
|
|
" blobs, got ",
|
|
total_loaded_blobs,
|
|
" only.\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
void extract(
|
|
int db_id,
|
|
Cursor* cursor,
|
|
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
|
|
int* total_loaded_blobs) {
|
|
if (load_all_) {
|
|
extractAll(db_id, cursor, blob_states, total_loaded_blobs);
|
|
} else {
|
|
extractFrom(
|
|
db_id,
|
|
cursor,
|
|
OperatorBase::Outputs(),
|
|
blob_states,
|
|
total_loaded_blobs);
|
|
}
|
|
}
|
|
|
|
void extractAll(
|
|
int db_id,
|
|
Cursor* cursor,
|
|
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
|
|
int* total_loaded_blobs) {
|
|
CAFFE_ENFORCE(cursor, "cursor is not valid");
|
|
int loaded_blobs = 0;
|
|
for (; cursor->Valid(); cursor->Next()) {
|
|
const auto key = load_save_op_util::buildBlobNameFromDbKey(
|
|
cursor->key(), strip_prefix_, add_prefix_);
|
|
if (key_to_dbid_.count(key) && key_to_dbid_[key] != db_id) {
|
|
CAFFE_THROW("Duplicate Key ", key, " is found!\n");
|
|
} else {
|
|
key_to_dbid_[key] = db_id;
|
|
}
|
|
|
|
BlobProto proto;
|
|
CAFFE_ENFORCE(
|
|
proto.ParseFromString(cursor->value()), "Couldn't parse Proto");
|
|
if (!keep_device_) {
|
|
// If we are not keeping the device as the one specified in the
|
|
// proto, we will set the current device.
|
|
SetCurrentDevice(&proto);
|
|
}
|
|
Blob* blob = ws_->CreateBlob(key);
|
|
load_save_op_util::ProcessBlob(
|
|
blob, proto, blob_states, key, &loaded_blobs);
|
|
}
|
|
*total_loaded_blobs += loaded_blobs;
|
|
}
|
|
|
|
void extractFrom(
|
|
int db_id,
|
|
Cursor* cursor,
|
|
const vector<Blob*>& outputs,
|
|
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
|
|
int* total_loaded_blobs) {
|
|
CAFFE_ENFORCE(cursor);
|
|
int loaded_blobs = 0;
|
|
for (; cursor->Valid(); cursor->Next()) {
|
|
const auto key = load_save_op_util::buildBlobNameFromDbKey(
|
|
cursor->key(), strip_prefix_, add_prefix_);
|
|
if (!output_indices_.count(key)) {
|
|
VLOG(1) << "Key " << key << " not used. Skipping.";
|
|
} else {
|
|
if (key_to_dbid_.count(key) && key_to_dbid_[key] != db_id) {
|
|
CAFFE_THROW("Duplicate Key ", key, " is found!\n");
|
|
} else {
|
|
key_to_dbid_[key] = db_id;
|
|
}
|
|
|
|
VLOG(2) << "Deserializing blob " << key;
|
|
BlobProto proto;
|
|
CAFFE_ENFORCE(proto.ParseFromString(cursor->value()));
|
|
if (!keep_device_) {
|
|
// If we are not keeping the device as the one specified in the
|
|
// proto, we will set the current device.
|
|
SetCurrentDevice(&proto);
|
|
}
|
|
auto blobIndex = output_indices_[key];
|
|
Blob* blob = outputs.at(blobIndex);
|
|
load_save_op_util::ProcessBlob(
|
|
blob, proto, blob_states, key, &loaded_blobs);
|
|
|
|
if (*total_loaded_blobs + loaded_blobs == OutputSize()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
*total_loaded_blobs += loaded_blobs;
|
|
}
|
|
|
|
private:
|
|
Workspace* ws_;
|
|
bool absolute_path_;
|
|
string add_prefix_;
|
|
string strip_prefix_;
|
|
string db_name_;
|
|
std::vector<std::string> db_names_;
|
|
string db_type_;
|
|
std::string db_options_;
|
|
bool keep_device_;
|
|
bool load_all_;
|
|
bool allow_incomplete_;
|
|
std::map<string, int> output_indices_;
|
|
std::map<string, int> key_to_dbid_;
|
|
std::vector<std::string> blob_names_;
|
|
std::vector<int64_t> shape_;
|
|
};
|
|
|
|
namespace internal {
|
|
class TORCH_API SaveOpImpl {
|
|
public:
|
|
SaveOpImpl(OperatorBase* op, const OperatorDef& operator_def, Workspace* ws);
|
|
|
|
bool RunOnDevice();
|
|
|
|
private:
|
|
OperatorBase* operator_;
|
|
std::string strip_prefix_;
|
|
std::string full_db_name_;
|
|
std::string db_type_;
|
|
std::string db_options_;
|
|
std::vector<std::string> blob_names_;
|
|
SerializationOptions options_;
|
|
};
|
|
} // namespace internal
|
|
|
|
template <class Context>
|
|
class SaveOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
explicit SaveOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws), impl_(this, operator_def, ws) {}
|
|
|
|
bool RunOnDevice() override {
|
|
return impl_.RunOnDevice();
|
|
}
|
|
|
|
private:
|
|
internal::SaveOpImpl impl_;
|
|
};
|
|
|
|
template <typename... Ts>
|
|
std::string FormatString(const std::string& pattern, Ts... values) {
|
|
// Start with an initial buffer size that is probably enough most of the time.
|
|
std::string buffer(256, '\0');
|
|
auto bytes_written =
|
|
snprintf(&buffer[0], buffer.size(), pattern.c_str(), values...);
|
|
if (bytes_written < 0) {
|
|
throw std::runtime_error("FormatString failed");
|
|
}
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
if (bytes_written > buffer.size()) {
|
|
// Our initial buffer size wasn't enough, resize and run again.
|
|
buffer.resize(bytes_written + 1);
|
|
bytes_written =
|
|
snprintf(&buffer[0], buffer.size(), pattern.c_str(), values...);
|
|
if (bytes_written < 0) {
|
|
throw std::runtime_error("FormatString failed");
|
|
}
|
|
}
|
|
// Truncate the string to the correct size to trim off the nul terminator.
|
|
buffer.resize(bytes_written);
|
|
return buffer;
|
|
}
|
|
|
|
// CheckpointOp is a wrapper over a SaveFloatTensorOp that basically allows
|
|
// flexible naming over iterations.
|
|
// The file pattern in db_name should be a format string that can be passed into
|
|
// sprintf with an int argument specifying the current iteration. An example:
|
|
// "/path/to/my/checkpoint/checkpoint_at_%d.pb"
|
|
template <class Context>
|
|
class CheckpointOp final : public Operator<Context> {
|
|
public:
|
|
explicit CheckpointOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws),
|
|
db_pattern_(this->template GetSingleArgument<string>("db", "")),
|
|
every_(this->template GetSingleArgument<int>("every", 1)),
|
|
ws_(ws),
|
|
save_op_def_(operator_def) {
|
|
CAFFE_ENFORCE_GT(
|
|
db_pattern_.size(), 0, "Must specify a checkpoint file pattern.");
|
|
CAFFE_ENFORCE_GT(every_, 0, "Checkpoint interval should be positive.");
|
|
if (every_ == 1) {
|
|
// Just issue a warning, but it's totally legal so we don't do anything.
|
|
LOG(WARNING) << "It seems that we are checkpointting every iteration. "
|
|
<< "Is that intended?";
|
|
}
|
|
save_op_def_.set_type("Save");
|
|
}
|
|
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
bool RunOnDevice() override {
|
|
int64_t iter =
|
|
this->template Input<Tensor>(0, CPU).template data<int64_t>()[0];
|
|
if (iter % every_ == 0) {
|
|
GetMutableArgument("db", true, &save_op_def_)
|
|
->set_s(FormatString(db_pattern_, iter));
|
|
SaveOp<Context> sub_op(save_op_def_, ws_);
|
|
return sub_op.Run();
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
private:
|
|
string db_pattern_;
|
|
int every_;
|
|
Workspace* ws_;
|
|
OperatorDef save_op_def_;
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
|