mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
76 lines
1.8 KiB
C++
76 lines
1.8 KiB
C++
#include "caffe2/operators/erf_op.h"
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool ErfGradientFunctor<CPUContext>::Forward(
|
|
const std::vector<int>& X_dims,
|
|
const std::vector<int>& /* dY_dims */,
|
|
const T* X,
|
|
const T* dY,
|
|
T* dX,
|
|
CPUContext* /* context */) const {
|
|
const int size = std::accumulate(
|
|
// NOLINTNEXTLINE(modernize-use-transparent-functors)
|
|
X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>());
|
|
ConstEigenVectorArrayMap<T> dY_arr(dY, size);
|
|
ConstEigenVectorArrayMap<T> X_arr(X, size);
|
|
EigenVectorMap<T>(dX, size) = T(2) / sqrtf(PI) * (-X_arr.square()).exp() * dY_arr;
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(
|
|
Erf,
|
|
UnaryElementwiseOp<
|
|
TensorTypes<float>,
|
|
CPUContext,
|
|
ErfFunctor<CPUContext>>);
|
|
REGISTER_CPU_OPERATOR(
|
|
ErfGradient,
|
|
BinaryElementwiseOp<
|
|
TensorTypes<float>,
|
|
CPUContext,
|
|
ErfGradientFunctor<CPUContext>>);
|
|
|
|
OPERATOR_SCHEMA(Erf)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.IdenticalTypeAndShape()
|
|
.SetDoc(R"DOC(
|
|
Calculates the arcsine of the given input tensor, element-wise.
|
|
)DOC")
|
|
.Input(0, "input", "Input tensor")
|
|
.Output(
|
|
0,
|
|
"output",
|
|
"The arcsine of the input tensor computed element-wise");
|
|
|
|
OPERATOR_SCHEMA(ErfGradient)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.IdenticalTypeAndShape();
|
|
|
|
namespace {
|
|
|
|
class GetErfGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
std::vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
"ErfGradient",
|
|
"",
|
|
std::vector<std::string>{I(0), GO(0)},
|
|
std::vector<std::string>{GI(0)});
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
REGISTER_GRADIENT(Erf, GetErfGradient);
|
|
|
|
} // namespace caffe2
|