mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
247 lines
5.7 KiB
C++
247 lines
5.7 KiB
C++
#include "caffe2/operators/arg_ops.h"
|
|
|
|
#include <functional>
|
|
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
namespace {
|
|
|
|
template <typename T, class Compare, class Context>
|
|
void ComputeArgImpl(
|
|
const int prev_size,
|
|
const int next_size,
|
|
const int n,
|
|
const Compare& comp,
|
|
const T* X,
|
|
int64_t* Y,
|
|
Context* context) {
|
|
math::Set<int64_t, Context>(prev_size * next_size, int64_t(0), Y, context);
|
|
for (int i = 0; i < prev_size; ++i) {
|
|
const T* cur_X = X + i * n * next_size + next_size;
|
|
for (int k = 1; k < n; ++k) {
|
|
for (int j = 0; j < next_size; ++j) {
|
|
int64_t* cur_Y = Y + i * next_size + j;
|
|
if (comp(*cur_X, X[i * n * next_size + *cur_Y * next_size + j])) {
|
|
*cur_Y = k;
|
|
}
|
|
++cur_X;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool ArgMaxReducer<CPUContext>::operator()(
|
|
const int prev_size,
|
|
const int next_size,
|
|
const int n,
|
|
const T* X,
|
|
int64_t* Y,
|
|
CPUContext* context) const {
|
|
ComputeArgImpl(prev_size, next_size, n, std::greater<T>(), X, Y, context);
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool ArgMinReducer<CPUContext>::operator()(
|
|
const int prev_size,
|
|
const int next_size,
|
|
const int n,
|
|
const T* X,
|
|
int64_t* Y,
|
|
CPUContext* context) const {
|
|
ComputeArgImpl(prev_size, next_size, n, std::less<T>(), X, Y, context);
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(ArgMax, ArgOp<CPUContext, ArgMaxReducer<CPUContext>>);
|
|
REGISTER_CPU_OPERATOR(ArgMin, ArgOp<CPUContext, ArgMinReducer<CPUContext>>);
|
|
|
|
namespace {
|
|
|
|
std::vector<TensorShape> InferTensor(
|
|
const OperatorDef& def,
|
|
const std::vector<TensorShape>& in) {
|
|
std::vector<TensorShape> out(1);
|
|
ArgumentHelper helper(def);
|
|
int axis = helper.GetSingleArgument("axis", -1);
|
|
const bool keep_dims = helper.GetSingleArgument("keepdims", true);
|
|
const auto& in_dims = in[0].dims();
|
|
auto* out_dims = out[0].mutable_dims();
|
|
if (axis == -1) {
|
|
axis = in_dims.size() - 1;
|
|
}
|
|
for (int i = 0; i < axis; ++i) {
|
|
out_dims->Add(in_dims.Get(i));
|
|
}
|
|
if (keep_dims) {
|
|
out_dims->Add(1);
|
|
}
|
|
for (int i = axis + 1; i < in_dims.size(); ++i) {
|
|
out_dims->Add(in_dims.Get(i));
|
|
}
|
|
out[0].set_data_type(TensorProto::INT64);
|
|
return out;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
OPERATOR_SCHEMA(ArgMax)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.TensorInferenceFunction(InferTensor)
|
|
.SetDoc(R"DOC(
|
|
Retrieve the argmax of an axis dimension specified by the `axis`
|
|
argument. Given an input tensor and two arguments (`axis` and
|
|
`keepdims`), returns a tensor containing the indices of the largest
|
|
element along the given axis. If the `keepdims` arg is *True* (default),
|
|
the shape of the output tensor matches the input tensor except the
|
|
`axis` dimension equals 1. Else, the `axis` dimension of the output
|
|
tensor is removed.
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/arg_ops.cc
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"ArgMax",
|
|
["X"],
|
|
["Indices"],
|
|
axis=2,
|
|
keepdims=False
|
|
)
|
|
|
|
workspace.FeedBlob("X", (np.random.randint(10, size=(3,3,3))).astype(np.float32))
|
|
print("X:", workspace.FetchBlob("X"))
|
|
workspace.RunOperatorOnce(op)
|
|
print("Indices:", workspace.FetchBlob("Indices"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
X: [[[4. 9. 6.]
|
|
[6. 6. 1.]
|
|
[9. 5. 4.]]
|
|
|
|
[[6. 7. 4.]
|
|
[7. 9. 1.]
|
|
[3. 2. 8.]]
|
|
|
|
[[3. 4. 6.]
|
|
[5. 2. 7.]
|
|
[1. 5. 7.]]]
|
|
Indices: [[1 0 0]
|
|
[1 1 2]
|
|
[2 2 2]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
|
|
.Output(
|
|
0,
|
|
"Indices",
|
|
"*(type: Tensor`<float>`)* Tensor of indices for the largest values.")
|
|
.Arg("axis", "*(type: int; default: -1)* The axis to get argmax.")
|
|
.Arg(
|
|
"keepdims",
|
|
"*(type: bool; default: True)* If True (default), the output tensor "
|
|
"shape will match the input tensor shape except the `axis` dimension "
|
|
"equals 1. Else, the `axis` dimension of the output tensor is removed.");
|
|
|
|
OPERATOR_SCHEMA(ArgMin)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.TensorInferenceFunction(InferTensor)
|
|
.SetDoc(R"DOC(
|
|
Retrieve the argmin of an axis dimension specified by the `axis`
|
|
argument. Given an input tensor and two arguments (`axis` and
|
|
`keepdims`), returns a tensor containing the indices of the smallest
|
|
element along the given axis. If the `keepdims` arg is *True* (default),
|
|
the shape of the output tensor matches the input tensor except the
|
|
`axis` dimension equals 1. Else, the `axis` dimension of the output
|
|
tensor is removed.
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/arg_ops.cc
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"ArgMin",
|
|
["X"],
|
|
["Indices"],
|
|
axis=1
|
|
)
|
|
|
|
workspace.FeedBlob("X", (np.random.randint(10, size=(5,5))).astype(np.float32))
|
|
print("X:", workspace.FetchBlob("X"))
|
|
workspace.RunOperatorOnce(op)
|
|
print("Indices:", workspace.FetchBlob("Indices"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
X: [[9. 4. 6. 4. 1.]
|
|
[5. 9. 8. 3. 4.]
|
|
[6. 1. 0. 2. 9.]
|
|
[7. 8. 2. 4. 9.]
|
|
[3. 9. 4. 9. 4.]]
|
|
Indices: [[4]
|
|
[3]
|
|
[2]
|
|
[2]
|
|
[0]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
|
|
.Output(
|
|
0,
|
|
"Indices",
|
|
"*(type: Tensor`<float>`)* Tensor of indices for the smallest values.")
|
|
.Arg("axis", "*(type: int; default: -1)* The axis to get argmin.")
|
|
.Arg(
|
|
"keepdims",
|
|
"*(type: bool; default: True)* If True (default), the output tensor "
|
|
"shape will match the input tensor shape except the `axis` dimension "
|
|
"equals 1. Else, the `axis` dimension of the output tensor is removed.");
|
|
|
|
SHOULD_NOT_DO_GRADIENT(ArgMax);
|
|
SHOULD_NOT_DO_GRADIENT(ArgMin);
|
|
|
|
} // namespace caffe2
|