mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
169 lines
6.1 KiB
C++
169 lines
6.1 KiB
C++
// Copyright (c) Facebook Inc. and Microsoft Corporation.
|
|
// Licensed under the MIT license.
|
|
|
|
#include "./schema.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
SparseLengthsSumFused8BitRowwise,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 SparseLengthsSumFused8BitRowwise operator")
|
|
.Input(0, "DATA", "data tensor", "T1")
|
|
.Input(1, "INDICES", "indices tensor", "T2")
|
|
.Input(2, "LENGTHS", "lengths tensor", "T2")
|
|
.Output(0, "output", "Output tensor", "T2")
|
|
.TypeConstraint(
|
|
"T1",
|
|
{"tensor(uint8)"},
|
|
"Constrain input data to uint8 tensors.")
|
|
.TypeConstraint(
|
|
"T2",
|
|
{"tensor(int8)",
|
|
"tensor(int16)",
|
|
"tensor(int32)",
|
|
"tensor(int64)",
|
|
"tensor(uint8)",
|
|
"tensor(uint16)",
|
|
"tensor(uint32)",
|
|
"tensor(uint64)"},
|
|
"Constrain index and length to integral tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
SparseLengthsSum,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 SparseLengthsSum operator")
|
|
.Input(0, "DATA", "data tensor", "T1")
|
|
.Input(1, "INDICES", "indices tensor", "T2")
|
|
.Input(2, "LENGTHS", "lengths tensor", "T2")
|
|
.Output(0, "output", "Output tensor", "T1")
|
|
.TypeConstraint(
|
|
"T1",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors.")
|
|
.TypeConstraint(
|
|
"T2",
|
|
{"tensor(int8)",
|
|
"tensor(int16)",
|
|
"tensor(int32)",
|
|
"tensor(int64)",
|
|
"tensor(uint8)",
|
|
"tensor(uint16)",
|
|
"tensor(uint32)",
|
|
"tensor(uint64)"},
|
|
"Constrain index and length to integral tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
SparseLengthsWeightedSum,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 SparseLengthsWeightedSum operator")
|
|
.Input(0, "DATA", "data tensor", "T1")
|
|
.Input(1, "WEIGHTS", "data tensor", "T1")
|
|
.Input(2, "INDICES", "indices tensor", "T2")
|
|
.Input(3, "LENGTHS", "lengths tensor", "T2")
|
|
.Output(0, "output", "Output tensor", "T1")
|
|
.TypeConstraint(
|
|
"T1",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors.")
|
|
.TypeConstraint(
|
|
"T2",
|
|
{"tensor(int8)",
|
|
"tensor(int16)",
|
|
"tensor(int32)",
|
|
"tensor(int64)",
|
|
"tensor(uint8)",
|
|
"tensor(uint16)",
|
|
"tensor(uint32)",
|
|
"tensor(uint64)"},
|
|
"Constrain index and length to integral tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
BatchGather,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 BatchGather operator")
|
|
.Input(0, "DATA", "data tensor", "T1")
|
|
.Input(1, "INDICES", "indices tensor", "T2")
|
|
.Output(0, "output", "Output tensor", "T1")
|
|
.TypeConstraint(
|
|
"T1",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors.")
|
|
.TypeConstraint(
|
|
"T2",
|
|
{"tensor(int8)",
|
|
"tensor(int16)",
|
|
"tensor(int32)",
|
|
"tensor(int64)",
|
|
"tensor(uint8)",
|
|
"tensor(uint16)",
|
|
"tensor(uint32)",
|
|
"tensor(uint64)"},
|
|
"Constrain index and length to integral tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
DotProduct,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 DotProduct operator")
|
|
.Input(0, "X", "Input 1 tensor", "T")
|
|
.Input(1, "Y", "Input 2 tensor", "T")
|
|
.Output(0, "Z", "Output tensor", "T")
|
|
.TypeConstraint(
|
|
"T",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
FCTransposed,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 FCTransposed operator")
|
|
.Input(0, "X", "Input tensor", "T")
|
|
.Input(1, "W", "Weight tensor", "T")
|
|
.Input(2, "B", "Bias tensor", "T")
|
|
.Output(0, "Z", "Output tensor", "T")
|
|
.TypeConstraint(
|
|
"T",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
BatchMatMul,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 BatchMatMul operator")
|
|
.Input(0, "X", "tensor of shape (dim0, dim1 ... M, K)", "T")
|
|
.Input(1, "Y", "tensor of shape (dim0, dim2 ... K, N)", "T")
|
|
.Output(0, "Z", "tensor of shape (dim0, dim1 ... M, N)", "T")
|
|
.TypeConstraint(
|
|
"T",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors."));
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
|
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
|
ExpandDims,
|
|
1,
|
|
OpSchema()
|
|
.SetDoc("Mirror Caffe2 ExpandDims operator")
|
|
.Input(0, "X", "Input tensor", "T")
|
|
.Output(0, "Y", "Output tensor", "T")
|
|
.TypeConstraint(
|
|
"T",
|
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
"Constrain input and output types to float tensors."));
|
|
|
|
} // namespace ONNX_NAMESPACE
|