mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This PR: - creates the "jiterator" pattern, allowing elementwise unary and binary kernels that don't accept scalars to be jit compiled when called - ports the gcd and i1 CUDA kernels to use the jiterator - extends elementwise binary systemic testing to be comparable to elementwise unary systemic testing - separates one test case from test_out in test_ops.py - updates more OpInfos to use expected failures instead of skips The jiterator currently does not support half, bfloat16 or complex dtypes. It also (as mentioned above) doesn't support scalar inputs. In the future we expect to add support for those datatypes and scalars. Pull Request resolved: https://github.com/pytorch/pytorch/pull/69439 Reviewed By: ngimel Differential Revision: D32874968 Pulled By: mruberry fbshipit-source-id: d44bb9cde4f602703e75400ec5a0b209f085e9b3
1425 lines
65 KiB
Python
1425 lines
65 KiB
Python
# Owner(s): ["module: tests"]
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
import math
|
|
from itertools import product, chain
|
|
from numbers import Number
|
|
import random
|
|
import unittest
|
|
|
|
from torch._six import inf, nan
|
|
from torch.testing._internal.common_utils import (
|
|
TestCase, run_tests, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict,
|
|
suppress_warnings, TEST_SCIPY, slowTest, skipIfNoSciPy, IS_WINDOWS, gradcheck)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
unary_ufuncs, _NOTHING)
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests, ops, dtypes, onlyCPU, onlyNativeDeviceTypes,
|
|
onlyCUDA, dtypesIfCUDA, precisionOverride, skipCUDAIfRocm, dtypesIfCPU,
|
|
OpDTypes)
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_dtype import (
|
|
floating_types_and, all_types_and_complex_and, floating_and_complex_types_and, get_all_dtypes, get_all_math_dtypes,
|
|
get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
|
|
)
|
|
|
|
if TEST_SCIPY:
|
|
import scipy
|
|
|
|
# Refer [scipy reference filter]
|
|
# Filter operators for which the reference function
|
|
# is available in the current environment (for reference_numerics tests).
|
|
reference_filtered_ops = list(filter(lambda op: op.ref is not _NOTHING, unary_ufuncs))
|
|
|
|
# Tests for unary "universal functions (ufuncs)" that accept a single
|
|
# tensor and have common properties like:
|
|
# - they are elementwise functions
|
|
# - the input shape is the output shape
|
|
# - they typically have method and inplace variants
|
|
# - they typically support the out kwarg
|
|
# - they typically have NumPy or SciPy references
|
|
|
|
# See NumPy's universal function documentation
|
|
# (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
|
|
# about the concept of ufuncs.
|
|
|
|
# Functions tested here:
|
|
#
|
|
|
|
# Interesting values and extremal values for different dtypes
|
|
_unsigned_int_vals = (0, 1, 55, 127)
|
|
_int_vals = (0, -1, 1, -55, 55, -127, 127, -128, 128)
|
|
_large_int_vals = (-1113, 1113, -10701, 10701)
|
|
_float_vals = (0.,
|
|
-.001, .001,
|
|
-.25, .25,
|
|
-1., 1.,
|
|
-math.pi / 2, math.pi / 2,
|
|
-math.pi + .00001, math.pi - .00001,
|
|
-math.pi, math.pi,
|
|
-math.pi - .00001, math.pi + .00001)
|
|
_large_float16_vals = (-501, 501,
|
|
-1001.2, 1001.2,
|
|
-13437.7, 13437.7)
|
|
_large_float_vals = _large_float16_vals + (-4988429.2, 4988429.2, -1e20, 1e20)
|
|
_float_extremals = (float('inf'), float('-inf'), float('nan'))
|
|
_medium_length = 812
|
|
_large_size = (1029, 917)
|
|
|
|
|
|
# Replace values satisfying condition with a safe value. This is used to block
|
|
# out values the could cause singularity like tan(pi/2)
|
|
def replace_values_in_tensor(tensor, condition, safe_value):
|
|
mask = condition(tensor)
|
|
tensor.masked_fill_(mask, safe_value)
|
|
|
|
|
|
# Returns generator of tensors of different sizes filled with values in domain
|
|
# and with intested region filled with `vals`. This will help test different code
|
|
# paths for the given vals
|
|
# `filter_` can be either None or a tuple of (condition, safe_value). When not None
|
|
# values satisfying `condition`` will be replaced with `safe_value` in the generated
|
|
# tensor. This is useful to avoid singularities when generating inputs for tests, such
|
|
# as tan(pi/2)
|
|
def generate_tensors_from_vals(vals, device, dtype, domain, filter_):
|
|
offset = 63
|
|
|
|
assert _large_size[1] > (_medium_length + offset) # large tensor should be large enough
|
|
assert len(vals) < _medium_length # medium tensor should contain all vals
|
|
assert _medium_length % 4 == 0 # ensure vectorized code coverage
|
|
|
|
if not dtype.is_complex:
|
|
# Filter values based on Operators domain.
|
|
# Note: Complex numbers don't belong to ordered field,
|
|
# so we don't filter for them.
|
|
if domain[0] is not None:
|
|
vals = list(filter(lambda x: x >= domain[0], vals))
|
|
if domain[1] is not None:
|
|
vals = list(filter(lambda x: x < domain[1], vals))
|
|
|
|
if filter_ is not None:
|
|
condition, safe_value = filter_
|
|
|
|
# Constructs the large tensor containing vals
|
|
large_tensor = make_tensor(_large_size, device=device, dtype=dtype, low=domain[0], high=domain[1])
|
|
|
|
# Inserts the vals at an odd place
|
|
large_tensor[57][offset:offset + len(vals)] = torch.tensor(vals, device=device, dtype=dtype)
|
|
|
|
if filter_ is not None:
|
|
replace_values_in_tensor(large_tensor, condition, safe_value)
|
|
|
|
# Takes a medium sized copy of the large tensor containing vals
|
|
medium_tensor = large_tensor[57][offset:offset + _medium_length]
|
|
|
|
if filter_ is not None:
|
|
replace_values_in_tensor(medium_tensor, condition, safe_value)
|
|
|
|
# Constructs scalar tensors
|
|
scalar_tensors = (t.squeeze() for t in torch.split(medium_tensor, 1))
|
|
|
|
# Tensors with no elements
|
|
empty_sizes = ((0,), (0, 3, 3), (1, 0, 5), (6, 0, 0, 0), (3, 0, 1, 0))
|
|
empty_tensors = (torch.empty(size, device=device, dtype=dtype) for size in empty_sizes)
|
|
|
|
return chain(empty_tensors, scalar_tensors, (medium_tensor,), (large_tensor,))
|
|
|
|
|
|
# [Note generate_numeric_tensors, generate_numeric_tensors_hard,
|
|
# and generate_numeric_tensors_extremal]
|
|
#
|
|
# Returns an iterable of contiguous tensors with the same storage on the requested
|
|
# device and with the requested dtype.
|
|
#
|
|
# This function is intended to test the non-vectorized and vectorized code
|
|
# paths of unary functions, as well as their handling of odd tensor
|
|
# sizes (like zero-dim tensors and tensors with zero elements).
|
|
#
|
|
# The iterable will include an empty tensor, tensors with no elements,
|
|
# zero dim (scalar) tensors, small 1D tensors, a medium 1D tensor, and
|
|
# a large 2D tensor.
|
|
#
|
|
# These tensors will include interesting values. The generate_numeric_tensors_hard
|
|
# tests larger values (>500) and generate_numeric_tensors_extremal tests extremal
|
|
# values like -inf, inf, and nan.
|
|
#
|
|
# The randomly generated values can be restricted by the domain
|
|
# argument.
|
|
def generate_numeric_tensors(device, dtype, *,
|
|
domain=(None, None),
|
|
filter_=None):
|
|
# Special-cases bool
|
|
if dtype is torch.bool:
|
|
tensors = (torch.empty(0, device=device, dtype=torch.bool),
|
|
torch.tensor(True, device=device),
|
|
torch.tensor(False, device=device),
|
|
torch.tensor((True, False), device=device),
|
|
make_tensor((_medium_length,), device=device, dtype=dtype, low=None, high=None),
|
|
make_tensor(_large_size, device=device, dtype=dtype, low=None, high=None))
|
|
return tensors
|
|
|
|
# Acquires dtype-specific vals
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
vals = _float_vals
|
|
|
|
# Converts float -> complex vals if dtype is complex
|
|
if dtype.is_complex:
|
|
vals = tuple(complex(x, y) for x, y in product(vals, vals))
|
|
elif dtype is torch.uint8:
|
|
vals = _unsigned_int_vals
|
|
else: # dtypes is a signed integer type
|
|
assert dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
|
|
vals = _int_vals
|
|
|
|
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
|
|
|
|
|
|
def generate_numeric_tensors_hard(device, dtype, *,
|
|
domain=(None, None),
|
|
filter_=None):
|
|
is_signed_integral = dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
|
|
if not (dtype.is_floating_point or dtype.is_complex or is_signed_integral):
|
|
return ()
|
|
|
|
if dtype.is_floating_point:
|
|
if dtype is torch.float16:
|
|
# float16 has smaller range.
|
|
vals = _large_float16_vals
|
|
else:
|
|
vals = _large_float_vals
|
|
elif dtype.is_complex:
|
|
vals = tuple(complex(x, y) for x, y in chain(product(_large_float_vals, _large_float_vals),
|
|
product(_float_vals, _large_float_vals),
|
|
product(_large_float_vals, _float_vals)))
|
|
else:
|
|
vals = _large_int_vals
|
|
|
|
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
|
|
|
|
|
|
def generate_numeric_tensors_extremal(device, dtype, *,
|
|
domain=(None, None),
|
|
filter_=None):
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
return ()
|
|
|
|
vals = []
|
|
if dtype.is_floating_point:
|
|
vals = _float_extremals
|
|
elif dtype.is_complex:
|
|
vals = tuple(complex(x, y) for x, y in chain(product(_float_extremals, _float_extremals),
|
|
product(_float_vals, _float_extremals),
|
|
product(_float_extremals, _float_vals)))
|
|
|
|
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
|
|
|
|
|
|
# TODO: port test_unary_out_op_mem_overlap
|
|
# TODO: add test for inplace variants erroring on broadcasted inputs
|
|
class TestUnaryUfuncs(TestCase):
|
|
exact_dtype = True
|
|
|
|
@ops([_fn for _fn in unary_ufuncs if _fn.domain != (None, None)],
|
|
allowed_dtypes=floating_types_and(torch.bfloat16, torch.half))
|
|
def test_float_domains(self, device, dtype, op):
|
|
eps = (1e-5, 1e-3, 1e-1, 1, 2, 10, 20, 50, 100)
|
|
|
|
low, high = op.domain
|
|
# NOTE: the following two loops are separated for readability
|
|
if low is not None:
|
|
low_tensor = torch.tensor(low, device=device, dtype=dtype)
|
|
for epsilon in eps:
|
|
lower_tensor = low_tensor - epsilon
|
|
|
|
# Skips the test if the difference is not representable,
|
|
# which can occur if, for example, the difference is small
|
|
# and the dtype is imprecise (like bfloat16 is)
|
|
if lower_tensor.item() == low_tensor.item():
|
|
continue
|
|
|
|
result = op(lower_tensor)
|
|
self.assertEqual(result.item(), float('nan'),
|
|
msg=("input of {0} outside lower domain boundary"
|
|
" {1} produced {2}, not nan!").format(lower_tensor.item(),
|
|
low,
|
|
result.item()))
|
|
|
|
if high is not None:
|
|
high_tensor = torch.tensor(high, device=device, dtype=dtype)
|
|
for epsilon in eps:
|
|
higher_tensor = high_tensor + epsilon
|
|
|
|
# See above comment
|
|
if higher_tensor.item() == high_tensor.item():
|
|
continue
|
|
|
|
result = op(higher_tensor)
|
|
self.assertEqual(result.item(), float('nan'),
|
|
msg=("input of {0} outside upper domain boundary"
|
|
" {1} produced {2}, not nan!").format(higher_tensor.item(),
|
|
high,
|
|
result.item()))
|
|
|
|
# Helper for comparing torch tensors and numpy arrays
|
|
# TODO: should this or assertEqual also validate that strides are equal?
|
|
def assertEqualHelper(self, actual, expected, msg, *, dtype, exact_dtype=True, **kwargs):
|
|
assert isinstance(actual, torch.Tensor)
|
|
|
|
# Some NumPy functions return scalars, not arrays
|
|
if isinstance(expected, Number):
|
|
self.assertEqual(actual.item(), expected, msg, **kwargs)
|
|
elif isinstance(expected, np.ndarray):
|
|
# Handles exact dtype comparisons between arrays and tensors
|
|
if exact_dtype:
|
|
# Allows array dtype to be float32 when comparing with bfloat16 tensors
|
|
# since NumPy doesn't support the bfloat16 dtype
|
|
# Also ops like scipy.special.erf, scipy.special.erfc, etc, promote float16
|
|
# to float32
|
|
if expected.dtype == np.float32:
|
|
assert actual.dtype in (torch.float16, torch.bfloat16, torch.float32)
|
|
else:
|
|
assert expected.dtype == torch_to_numpy_dtype_dict[actual.dtype]
|
|
|
|
self.assertEqual(actual,
|
|
torch.from_numpy(expected).to(actual.dtype),
|
|
msg,
|
|
exact_device=False,
|
|
**kwargs)
|
|
else:
|
|
self.assertEqual(actual, expected, msg, exact_device=False, **kwargs)
|
|
|
|
# Tests that the function and its (array-accepting) reference produce the same
|
|
# values on given tensors
|
|
def _test_reference_numerics(self, dtype, op, tensors, equal_nan=True):
|
|
def _helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan=True):
|
|
if not torch.can_cast(numpy_to_torch_dtype_dict[expected.dtype.type], dtype):
|
|
exact_dtype = False
|
|
|
|
if dtype in [torch.uint8, torch.int8, torch.bool]:
|
|
# NOTE: For these dtypes, PyTorch computes in the default scalar type (float)
|
|
# while NumPy computes in float16
|
|
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
|
|
exact_dtype=exact_dtype, rtol=1e-3, atol=1e-2)
|
|
elif dtype is torch.bfloat16:
|
|
# Ref: https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_utils.py#L1149
|
|
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
|
|
exact_dtype=exact_dtype, rtol=16e-3, atol=1e-5)
|
|
else:
|
|
self.assertEqualHelper(actual, expected, msg, dtype=dtype, equal_nan=equal_nan, exact_dtype=exact_dtype)
|
|
|
|
for t in tensors:
|
|
torch_kwargs, numpy_kwargs = op.sample_kwargs(t.device, dtype, t)
|
|
if dtype is torch.bfloat16:
|
|
a = t.cpu().to(torch.float32).numpy()
|
|
else:
|
|
a = t.cpu().numpy()
|
|
|
|
actual = op(t, **torch_kwargs)
|
|
expected = op.ref(a, **numpy_kwargs)
|
|
|
|
# Crafts a custom error message for smaller, printable tensors
|
|
if t.numel() < 10:
|
|
msg = ("Failed to produce expected results! Input tensor was"
|
|
" {0}, torch result is {1}, and reference result is"
|
|
" {2}.").format(t, actual, expected)
|
|
else:
|
|
msg = None
|
|
|
|
exact_dtype = True
|
|
if isinstance(actual, torch.Tensor):
|
|
_helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan)
|
|
else:
|
|
for x, y in zip(expected, actual):
|
|
# testing multi-outputs results
|
|
_helper_reference_numerics(x, y, msg, exact_dtype, equal_nan)
|
|
|
|
# Tests that the function and its (array-accepting) reference produce the same
|
|
# values on a range of tensors, including empty tensors, scalar tensors,
|
|
# 1D tensors and a large 2D tensor with interesting and extremal values
|
|
# and noncontiguities.
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops)
|
|
def test_reference_numerics_normal(self, device, dtype, op):
|
|
tensors = generate_numeric_tensors(device, dtype,
|
|
domain=op.domain,
|
|
filter_=op.reference_numerics_filter)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops, allowed_dtypes=floating_and_complex_types_and(
|
|
torch.bfloat16, torch.half, torch.int8, torch.int16, torch.int32, torch.int64
|
|
))
|
|
def test_reference_numerics_hard(self, device, dtype, op):
|
|
if not op.handles_large_floats:
|
|
raise self.skipTest("This op does not handle large values")
|
|
|
|
tensors = generate_numeric_tensors_hard(device, dtype,
|
|
domain=op.domain)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops,
|
|
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half))
|
|
def test_reference_numerics_extremal(self, device, dtype, op):
|
|
handles_extremals = (op.handles_complex_extremals if
|
|
dtype in (torch.cfloat, torch.cdouble) else op.handles_extremals)
|
|
if not handles_extremals:
|
|
raise self.skipTest("This op does not handle extremal values")
|
|
|
|
tensors = generate_numeric_tensors_extremal(device, dtype,
|
|
domain=op.domain)
|
|
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
# Tests for testing (non)contiguity consistency
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_contig_vs_every_other(self, device, dtype, op):
|
|
contig = make_tensor((1026,), device=device, dtype=dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
non_contig = contig[::2]
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, non_contig)
|
|
self.assertEqual(op(contig, **torch_kwargs)[::2], op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_contig_vs_transposed(self, device, dtype, op):
|
|
contig = make_tensor((789, 357), device=device, dtype=dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
non_contig = contig.T
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs).T, op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_non_contig(self, device, dtype, op):
|
|
shapes = [(5, 7), (1024,)]
|
|
for shape in shapes:
|
|
contig = make_tensor(shape, device, dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
|
|
non_contig.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_non_contig_index(self, device, dtype, op):
|
|
contig = make_tensor((2, 2, 1, 2), device, dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
non_contig = contig[:, 1, ...]
|
|
contig = non_contig.contiguous()
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_non_contig_expand(self, device, dtype, op):
|
|
shapes = [(1, 3), (1, 7), (5, 7)]
|
|
for shape in shapes:
|
|
contig = make_tensor(shape, device, dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
non_contig = contig.clone().expand(3, -1, -1)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
contig = op(contig, **torch_kwargs)
|
|
non_contig = op(non_contig, **torch_kwargs)
|
|
for i in range(3):
|
|
self.assertEqual(contig, non_contig[i],
|
|
msg='non-contiguous expand[' + str(i) + ']')
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_contig_size1(self, device, dtype, op):
|
|
contig = make_tensor((5, 100), device, dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
contig = contig[:1, :50]
|
|
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
|
|
contig2.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
def test_contig_size1_large_dim(self, device, dtype, op):
|
|
contig = make_tensor((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), device, dtype,
|
|
low=op.domain[0], high=op.domain[1])
|
|
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
|
|
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
|
|
contig2.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
|
|
|
|
# Tests that computation on a multiple batches is the same as
|
|
# per-batch computation.
|
|
@ops(unary_ufuncs)
|
|
def test_batch_vs_slicing(self, device, dtype, op):
|
|
input = make_tensor((1024, 512), dtype=dtype, device=device,
|
|
low=op.domain[0], high=op.domain[1])
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
|
|
actual = op(input, **torch_kwargs)
|
|
expected = torch.stack([op(slice, **torch_kwargs) for slice in input])
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
def _test_out_arg(self, op, input, output, expected, **kwargs):
|
|
if op.safe_casts_outputs:
|
|
expect_fail = not torch.can_cast(expected.dtype, output.dtype)
|
|
else:
|
|
expect_fail = output.dtype != expected.dtype
|
|
|
|
if expect_fail:
|
|
with self.assertRaises(RuntimeError):
|
|
op(input, out=output, **kwargs)
|
|
else:
|
|
res = op(input, out=output, **kwargs)
|
|
self.assertTrue(res is output)
|
|
self.assertEqual(output, expected.to(output.dtype))
|
|
|
|
@ops(unary_ufuncs, dtypes=OpDTypes.supported)
|
|
def test_out_arg_all_dtypes(self, device, dtype, op):
|
|
if not op.supports_out:
|
|
self.skipTest("Skipped! Op doesn't support out= kwarg.")
|
|
|
|
input = make_tensor((64, 64), dtype=dtype, device=device,
|
|
low=op.domain[0], high=op.domain[1])
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
|
|
expected = op(input, **torch_kwargs)
|
|
|
|
for out_dtype in all_types_and_complex_and(torch.bool, torch.half):
|
|
out = torch.empty_like(input, dtype=out_dtype)
|
|
self._test_out_arg(op, input, out, expected, **torch_kwargs)
|
|
|
|
@dtypes(*(get_all_int_dtypes() + [torch.bool] +
|
|
get_all_fp_dtypes(include_bfloat16=False)))
|
|
def test_nan_to_num(self, device, dtype):
|
|
for contiguous in [False, True]:
|
|
x = make_tensor((64, 64), low=0., high=100., dtype=dtype, device=device)
|
|
|
|
if dtype.is_floating_point:
|
|
# Add extremal values.
|
|
extremals = [float('nan'), float('inf'), -float('inf')]
|
|
for idx, extremal in zip(torch.randint(0, 63, (3,)), extremals):
|
|
x[idx, :] = extremal
|
|
|
|
if not contiguous:
|
|
x = x.T
|
|
|
|
# With args
|
|
nan = random.random()
|
|
posinf = random.random() * 5
|
|
neginf = random.random() * 10
|
|
|
|
self.compare_with_numpy(lambda x: x.nan_to_num(nan=nan, posinf=posinf),
|
|
lambda x: np.nan_to_num(x, nan=nan, posinf=posinf),
|
|
x)
|
|
self.compare_with_numpy(lambda x: x.nan_to_num(posinf=posinf, neginf=neginf),
|
|
lambda x: np.nan_to_num(x, posinf=posinf, neginf=neginf),
|
|
x)
|
|
|
|
# Out Variant
|
|
out = torch.empty_like(x)
|
|
result = torch.nan_to_num(x)
|
|
torch.nan_to_num(x, out=out)
|
|
self.assertEqual(result, out)
|
|
|
|
result = torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
|
|
torch.nan_to_num(x, out=out, nan=nan, posinf=posinf, neginf=neginf)
|
|
self.assertEqual(result, out)
|
|
|
|
@dtypes(torch.cdouble)
|
|
def test_complex_edge_values(self, device, dtype):
|
|
# sqrt Test Reference: https://github.com/pytorch/pytorch/pull/47424
|
|
x = torch.tensor(0. - 1.0e+20j, dtype=dtype, device=device)
|
|
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
|
|
# acos test reference: https://github.com/pytorch/pytorch/issue/42952
|
|
# Skip on Windows, as CUDA acos returns conjugate value
|
|
# see https://github.com/pytorch/pytorch/issues/52299
|
|
if not (IS_WINDOWS and dtype == torch.cdouble and "cuda" in device):
|
|
self.compare_with_numpy(torch.acos, np.arccos, x)
|
|
|
|
x = torch.tensor((-1.0e+60 if dtype == torch.cdouble else -1.0e+20) - 4988429.2j, dtype=dtype, device=device)
|
|
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
|
|
@dtypes(torch.float, torch.double)
|
|
def test_digamma_special(self, device, dtype):
|
|
# Based on SciPy test for the following special values.
|
|
# Reference:
|
|
# https://github.com/scipy/scipy/blob/3a8a3a1d4657254a6611e77e9c28feafa26e6645/scipy/special/tests/test_digamma.py#L22
|
|
euler = 0.57721566490153286
|
|
dataset = [(0., -0.),
|
|
(1, -euler),
|
|
(0.5, -2 * math.log(2) - euler),
|
|
(1 / 3, -math.pi / (2 * math.sqrt(3)) - 3 * math.log(3) / 2 - euler),
|
|
(1 / 4, -math.pi / 2 - 3 * math.log(2) - euler),
|
|
(1 / 6, -math.pi * math.sqrt(3) / 2 - 2 * math.log(2) - 3 * math.log(3) / 2 - euler),
|
|
(1 / 8, -math.pi / 2 - 4 * math.log(2) -
|
|
(math.pi + math.log(2 + math.sqrt(2)) - math.log(2 - math.sqrt(2))) / math.sqrt(2) - euler)]
|
|
x = torch.tensor(dataset, device=device, dtype=dtype)
|
|
self.compare_with_numpy(torch.digamma, scipy.special.digamma, x)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
|
|
@dtypes(torch.float, torch.double)
|
|
def test_digamma(self, device, dtype):
|
|
# Tests pole behavior
|
|
tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
|
|
-100.99999994, 0.000000111, -1931.99999994,
|
|
-0.000000111, 0, -0, -1, -2, -931], dtype=dtype, device=device)
|
|
self.compare_with_numpy(torch.digamma, scipy.special.digamma, tensor)
|
|
|
|
@skipCUDAIfRocm
|
|
@dtypes(*get_all_fp_dtypes(include_half=True, include_bfloat16=False))
|
|
def test_frexp(self, device, dtype):
|
|
input = make_tensor((50, 50), device, dtype)
|
|
mantissa, exponent = torch.frexp(input)
|
|
np_mantissa, np_exponent = np.frexp(input.cpu().numpy())
|
|
|
|
self.assertEqual(mantissa, np_mantissa)
|
|
self.assertEqual(exponent, np_exponent)
|
|
|
|
# torch.frexp returns exponent in int32 to be compatible with np.frexp
|
|
self.assertTrue(exponent.dtype == torch.int32)
|
|
self.assertTrue(torch_to_numpy_dtype_dict[exponent.dtype] == np_exponent.dtype)
|
|
|
|
@skipCUDAIfRocm
|
|
def test_frexp_assert_raises(self, device):
|
|
invalid_input_dtypes = get_all_int_dtypes() + \
|
|
get_all_complex_dtypes() + \
|
|
[torch.bool]
|
|
for dtype in invalid_input_dtypes:
|
|
input = make_tensor((50, 50), device, dtype)
|
|
with self.assertRaisesRegex(RuntimeError, r"torch\.frexp\(\) only supports floating-point dtypes"):
|
|
torch.frexp(input)
|
|
|
|
for dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False):
|
|
input = make_tensor((50, 50), device, dtype)
|
|
|
|
dtypes = list(all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
|
|
dtypes.remove(dtype)
|
|
for mantissa_dtype in dtypes:
|
|
mantissa = torch.empty_like(input, dtype=mantissa_dtype)
|
|
exponent = torch.empty_like(input, dtype=torch.int)
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"torch\.frexp\(\) expects mantissa to have dtype .+ but got .+"):
|
|
torch.frexp(input, out=(mantissa, exponent))
|
|
|
|
dtypes.append(dtype)
|
|
dtypes.remove(torch.int)
|
|
for exponent_dtype in dtypes:
|
|
mantissa = torch.empty_like(input)
|
|
exponent = torch.empty_like(input, dtype=exponent_dtype)
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"torch\.frexp\(\) expects exponent to have int dtype but got .+"):
|
|
torch.frexp(input, out=(mantissa, exponent))
|
|
|
|
def test_mvlgamma_argcheck(self, device):
|
|
def run_test(d):
|
|
input = torch.linspace((d - 2) / 2, 10, 10, device=device)
|
|
torch.mvlgamma(input, d)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"All elements must be greater than \(p-1\)/2"):
|
|
run_test(3)
|
|
|
|
def test_polygamma_neg(self, device):
|
|
with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'):
|
|
torch.polygamma(-1, torch.tensor([1.0, 2.0], device=device))
|
|
|
|
# TODO resolve with opinfos
|
|
@onlyCPU
|
|
def test_op_invert(self, device):
|
|
res = 0xffff - torch.arange(127, dtype=torch.int8)
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.arange(127, dtype=dtype)
|
|
self.assertEqual(res.to(dtype), ~a)
|
|
|
|
self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True]))
|
|
|
|
# test exceptions
|
|
for dtype in (torch.half, torch.float, torch.double):
|
|
a = torch.zeros(10, dtype=dtype)
|
|
with self.assertRaises(TypeError):
|
|
b = ~a
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_abs_angle_complex_to_float(self, device, dtype):
|
|
# Constructs random complex values
|
|
from random import random
|
|
random_vals = []
|
|
for multiplier in (-1, 1, -10, 10, -100, 100):
|
|
for _ in range(10):
|
|
random_vals.append(complex(random() * multiplier, random() * multiplier))
|
|
|
|
for vals in (random_vals, []):
|
|
a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
t = torch.tensor(vals, device=device, dtype=dtype)
|
|
|
|
for fn_name in ('abs', 'angle'):
|
|
torch_fn = getattr(torch, fn_name)
|
|
np_fn = getattr(np, fn_name)
|
|
|
|
# Tests function
|
|
np_result = torch.from_numpy(np_fn(a))
|
|
torch_result = torch_fn(t).cpu()
|
|
self.assertEqual(np_result, torch_result, exact_dtype=True)
|
|
|
|
# Tests float out
|
|
float_dtype = torch.float32 if dtype is torch.complex64 else torch.float64
|
|
np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
|
|
float_out = torch.empty_like(t).float()
|
|
torch_fn(t, out=float_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests float out (resized out)
|
|
float_out = torch.empty(1, device=device, dtype=float_dtype)
|
|
torch_fn(t, out=float_out)
|
|
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests complex out
|
|
np_complex_out = np_fn(a)
|
|
complex_out = torch.empty_like(t)
|
|
torch_fn(t, out=complex_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests complex out (resized out)
|
|
complex_out = torch.empty(0, device=device, dtype=dtype)
|
|
torch_fn(t, out=complex_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests long out behavior (expected failure)
|
|
long_out = torch.empty(0, device=device, dtype=torch.long)
|
|
with self.assertRaises(RuntimeError):
|
|
torch_fn(t, out=long_out)
|
|
|
|
# Tests inplace
|
|
if fn_name == 'abs':
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
np_fn(a, out=a)
|
|
if dtype.is_complex:
|
|
with self.assertRaisesRegex(RuntimeError, "In-place abs is not supported for complex tensors."):
|
|
torch_inplace_method(t)
|
|
return
|
|
torch_inplace_method(t)
|
|
self.assertEqual(torch.from_numpy(a), t.cpu())
|
|
|
|
# Note: angle does not have an in-place variant
|
|
if fn_name == 'angle':
|
|
with self.assertRaises(AttributeError):
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
|
|
def check_internal_mem_overlap(self, inplace_op, num_inputs,
|
|
dtype, device,
|
|
expected_failure=False):
|
|
if isinstance(inplace_op, str):
|
|
inplace_op = getattr(torch.Tensor, inplace_op)
|
|
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
|
|
inputs = [input] + [torch.randn_like(input)
|
|
for i in range(num_inputs - 1)]
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
|
|
def unary_check_input_output_mem_overlap(self, data, sz, op,
|
|
expected_failure=False):
|
|
|
|
def _test(op, output, input):
|
|
output_exp = torch.empty_like(output)
|
|
op(input, out=output_exp)
|
|
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
|
|
|
|
# output is identical to input:
|
|
_test(op, output=data[0:sz], input=data[0:sz])
|
|
# output and input are independent:
|
|
_test(op, output=data[0:sz], input=data[sz:2 * sz])
|
|
# output partially overlaps with input:
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
|
|
# TODO: run on non-native device types
|
|
@dtypes(torch.double)
|
|
def test_unary_out_op_mem_overlap(self, device, dtype):
|
|
sz = 3
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
|
|
ints = torch.randint(-100, 100, (2 * sz,), device=device)
|
|
unary_mem_overlap_cases = [
|
|
("abs", doubles, True, True, 'cpu'),
|
|
("abs", doubles, True, True, 'cuda'),
|
|
("acos", doubles, True, True, 'cpu'),
|
|
("acos", doubles, True, True, 'cuda'),
|
|
("asin", doubles, True, True, 'cpu'),
|
|
("asin", doubles, True, True, 'cuda'),
|
|
("atan", doubles, True, True, 'cpu'),
|
|
("atan", doubles, True, True, 'cuda'),
|
|
("acosh", doubles, True, True, 'cpu'),
|
|
("acosh", doubles, True, True, 'cuda'),
|
|
("asinh", doubles, True, True, 'cpu'),
|
|
("asinh", doubles, True, True, 'cuda'),
|
|
("atanh", doubles, True, True, 'cpu'),
|
|
("atanh", doubles, True, True, 'cuda'),
|
|
("bitwise_not", ints, True, True, 'cpu'),
|
|
("bitwise_not", ints, True, True, 'cuda'),
|
|
("ceil", doubles, True, True, 'cpu'),
|
|
("ceil", doubles, True, True, 'cuda'),
|
|
("cos", doubles, True, True, 'cpu'),
|
|
("cos", doubles, True, True, 'cuda'),
|
|
("cosh", doubles, True, True, 'cpu'),
|
|
("cosh", doubles, True, True, 'cuda'),
|
|
("digamma", doubles, True, True, 'cpu'),
|
|
("erf", doubles, True, True, 'cpu'),
|
|
("erf", doubles, True, True, 'cuda'),
|
|
("erfc", doubles, True, True, 'cpu'),
|
|
("erfc", doubles, True, True, 'cuda'),
|
|
("erfinv", doubles, True, True, 'cpu'),
|
|
("erfinv", doubles, True, True, 'cuda'),
|
|
("exp", doubles, True, True, 'cpu'),
|
|
("exp", doubles, True, True, 'cuda'),
|
|
("exp2", doubles, True, True, 'cpu'),
|
|
("exp2", doubles, True, True, 'cuda'),
|
|
("expm1", doubles, True, True, 'cpu'),
|
|
("expm1", doubles, True, True, 'cuda'),
|
|
("floor", doubles, True, True, 'cpu'),
|
|
("floor", doubles, True, True, 'cuda'),
|
|
("frac", doubles, True, True, 'cpu'),
|
|
("frac", doubles, True, True, 'cuda'),
|
|
("i0", doubles, True, True, 'cpu'),
|
|
("i0", doubles, True, True, 'cuda'),
|
|
("log", positives, True, True, 'cpu'),
|
|
("log", positives, True, True, 'cuda'),
|
|
("log10", positives, True, True, 'cpu'),
|
|
("log10", positives, True, True, 'cuda'),
|
|
("log1p", positives, True, True, 'cpu'),
|
|
("log1p", positives, True, True, 'cuda'),
|
|
("log2", positives, True, True, 'cpu'),
|
|
("log2", positives, True, True, 'cuda'),
|
|
("neg", doubles, True, True, 'cpu'),
|
|
("neg", doubles, True, True, 'cuda'),
|
|
("reciprocal", doubles, True, True, 'cpu'),
|
|
("reciprocal", doubles, True, True, 'cuda'),
|
|
("round", doubles, True, True, 'cpu'),
|
|
("round", doubles, True, True, 'cuda'),
|
|
("rsqrt", positives, True, True, 'cpu'),
|
|
("rsqrt", positives, True, True, 'cuda'),
|
|
("sin", doubles, True, True, 'cpu'),
|
|
("sin", doubles, True, True, 'cuda'),
|
|
("sinh", doubles, True, True, 'cpu'),
|
|
("sinh", doubles, False, True, 'cuda'),
|
|
("sigmoid", doubles, True, True, 'cpu'),
|
|
("sigmoid", doubles, True, True, 'cuda'),
|
|
("logit", doubles, True, True, 'cpu'),
|
|
("logit", doubles, True, True, 'cuda'),
|
|
("sqrt", doubles, True, True, 'cpu'),
|
|
("sqrt", doubles, False, True, 'cuda'),
|
|
("tan", doubles, True, True, 'cpu'),
|
|
("tan", doubles, True, True, 'cuda'),
|
|
("tanh", doubles, True, True, 'cpu'),
|
|
("tanh", doubles, True, True, 'cuda'),
|
|
("trunc", doubles, True, True, 'cpu'),
|
|
("trunc", doubles, True, True, 'cuda')
|
|
]
|
|
|
|
for (fn, inputs, has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases:
|
|
if dev != device:
|
|
continue
|
|
out_fn = getattr(torch, fn)
|
|
in_fn = getattr(torch.Tensor, fn + '_')
|
|
|
|
self.unary_check_input_output_mem_overlap(inputs, sz, out_fn,
|
|
expected_failure=not has_input_output_mem_overlap_check)
|
|
|
|
self.check_internal_mem_overlap(in_fn, 1, dtype, dev,
|
|
expected_failure=not has_internal_mem_overlap_check)
|
|
|
|
# TODO: opinfo hardshrink
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardshrink(self, device, dtype):
|
|
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
|
|
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.3))
|
|
self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.5))
|
|
|
|
# test default lambd=0.5
|
|
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
|
|
|
|
# test non-contiguous case
|
|
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.t().hardshrink(0.3))
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardshrink_edge_cases(self, device, dtype) -> None:
|
|
def h(values, l_expected):
|
|
for l, expected in l_expected.items():
|
|
values_tensor = torch.tensor([float(v) for v in values],
|
|
dtype=dtype, device=device)
|
|
expected_tensor = torch.tensor([float(v) for v in expected],
|
|
dtype=dtype, device=device)
|
|
self.assertEqual(expected_tensor == values_tensor.hardshrink(l),
|
|
torch.ones_like(values_tensor, dtype=torch.bool))
|
|
|
|
def test_helper(min, max):
|
|
h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
{0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
|
|
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
|
|
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
|
|
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]})
|
|
|
|
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
|
|
|
|
@onlyCPU
|
|
@slowTest
|
|
@dtypes(torch.float)
|
|
def test_exp_slow(self, device, dtype):
|
|
# Test for https://github.com/pytorch/pytorch/issues/17271
|
|
# This is pretty slow on my Macbook but it only takes a few
|
|
# seconds on a beefy Xeon server
|
|
a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device))
|
|
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
|
|
self.assertEqual(a, b.expand(2 ** 31))
|
|
|
|
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardswish(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.multiply(
|
|
inputValues,
|
|
np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0)
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
expectedOutputTensor = \
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device)
|
|
|
|
# normal
|
|
self.assertEqual(torch.nn.functional.hardswish(inputTensor),
|
|
expectedOutputTensor)
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.clone().detach()
|
|
torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
|
|
self.assertEqual(inputTensorCpy, expectedOutputTensor)
|
|
|
|
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardsigmoid(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
|
|
# normal
|
|
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensor),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device))
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.clone().detach()
|
|
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device))
|
|
|
|
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardsigmoid_backward(self, device, dtype):
|
|
inputValues = [-3.0, 3.0, -2.0, 2.0, -6.0, 6.0]
|
|
expectedValues = [0.0, 0.0, 1.0 / 6.0, 1.0 / 6.0, 0.0, 0.0]
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device).requires_grad_()
|
|
expetedTensor = torch.tensor(expectedValues, dtype=dtype, device=device)
|
|
out = torch.nn.functional.hardsigmoid(inputTensor)
|
|
out.backward(torch.ones_like(inputTensor))
|
|
self.assertEqual(inputTensor.grad, expetedTensor)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(torch.float, torch.double)
|
|
def test_silu(self, device, dtype):
|
|
input_np = np.random.randn(5, 8)
|
|
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
|
|
input_np = np.concatenate((input_np, special_input), axis=0).astype(
|
|
torch_to_numpy_dtype_dict[dtype])
|
|
expected_output_np = input_np * scipy.special.expit(input_np)
|
|
|
|
expected_output = torch.from_numpy(expected_output_np).to(device)
|
|
expected_output_noncontig = expected_output.transpose(0, 1)
|
|
|
|
atol = 1e-6
|
|
rtol = 1e-6
|
|
|
|
input = torch.from_numpy(input_np).clone().contiguous().to(device)
|
|
self.assertEqual(torch.nn.functional.silu(input), expected_output,
|
|
atol=atol, rtol=rtol)
|
|
self.assertEqual(torch.nn.functional.silu(input, inplace=True),
|
|
expected_output, atol=atol, rtol=rtol)
|
|
|
|
input = torch.from_numpy(input_np).clone().to(device)
|
|
input_noncontig = input.transpose(0, 1)
|
|
self.assertEqual(torch.nn.functional.silu(input_noncontig),
|
|
expected_output_noncontig, atol=atol, rtol=rtol)
|
|
self.assertEqual(torch.nn.functional.silu(
|
|
input_noncontig, inplace=True), expected_output_noncontig,
|
|
atol=atol, rtol=rtol)
|
|
|
|
# It is not obvious how to merge this into OpInfo becuase these inputs
|
|
# succeed for gradcheck but are expected to fail for gradgradcheck
|
|
@dtypes(torch.double)
|
|
def test_sinc(self, device, dtype):
|
|
# The derivative of sinc(x) at x=0 has to be special cased.
|
|
# A naive computation will result in 0/0 -> NaN.
|
|
# We also need to be careful when we are very close to 0, as the
|
|
# derivative's denominator is squared, and there are some floats
|
|
# that are positive and whose squares are zero.
|
|
a = torch.tensor([0.0, torch.finfo(torch.double).tiny, 1.0],
|
|
dtype=dtype,
|
|
requires_grad=True,
|
|
device=device)
|
|
gradcheck(torch.sinc, a)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(torch.float, torch.double)
|
|
def test_mish(self, device, dtype):
|
|
input_np = np.random.randn(5, 8)
|
|
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
|
|
input_np = np.concatenate((input_np, special_input), axis=0).astype(
|
|
torch_to_numpy_dtype_dict[dtype])
|
|
expected_output_np = input_np * np.tanh(np.log1p(np.exp(input_np)))
|
|
|
|
expected_output = torch.from_numpy(expected_output_np).to(device)
|
|
expected_output_noncontig = expected_output.transpose(0, 1)
|
|
|
|
atol = 1e-6
|
|
rtol = 1e-6
|
|
|
|
input = torch.from_numpy(input_np).clone().contiguous().to(device)
|
|
self.assertEqual(torch.nn.functional.mish(input), expected_output,
|
|
atol=atol, rtol=rtol)
|
|
self.assertEqual(torch.nn.functional.mish(input, inplace=True),
|
|
expected_output, atol=atol, rtol=rtol)
|
|
|
|
input = torch.from_numpy(input_np).clone().to(device)
|
|
input_noncontig = input.transpose(0, 1)
|
|
self.assertEqual(torch.nn.functional.mish(input_noncontig),
|
|
expected_output_noncontig, atol=atol, rtol=rtol)
|
|
self.assertEqual(torch.nn.functional.mish(
|
|
input_noncontig, inplace=True), expected_output_noncontig,
|
|
atol=atol, rtol=rtol)
|
|
|
|
# do ops like threshold need a test_unary(_nonufunc) test suite?
|
|
@onlyCPU
|
|
@dtypes(*get_all_math_dtypes('cpu'))
|
|
def test_threshold(self, device, dtype):
|
|
if dtype != torch.uint8 and dtype != torch.float16 and not dtype.is_complex:
|
|
# 100 is wide enough to use AVX2 instructions for all types
|
|
x = torch.randn(100, dtype=torch.float, device=device).sign().to(dtype=dtype)
|
|
y = torch.threshold(x, 0, 0)
|
|
self.assertTrue(y.le(0).any())
|
|
|
|
def _helper_test_igamma(self, loglo, loghi, device, dtype,
|
|
torch_fcn, scipy_fcn):
|
|
exp1 = 2.71828182846
|
|
vec1 = torch.logspace(loglo, loghi, steps=500, base=exp1,
|
|
dtype=torch.float64, device=device).unsqueeze(-1)
|
|
vec1 = vec1.to(dtype)
|
|
inputs = [
|
|
(vec1, vec1.transpose(0, 1)),
|
|
(vec1, vec1), # for large number, it should approach 0.5
|
|
(vec1, 0.5 * vec1), # test for considerable ratio
|
|
(vec1, 2.0 * vec1),
|
|
(vec1[::2, :], vec1[::2, :]), # contiguous/noncontiguous tests
|
|
(vec1[::2, :], vec1[:vec1.shape[0] // 2, :]),
|
|
(vec1[:vec1.shape[0] // 2, :], vec1[::2, :]),
|
|
]
|
|
half_prec = dtype in [torch.bfloat16, torch.float16]
|
|
for input0, input1 in inputs:
|
|
actual = torch_fcn(input0, input1)
|
|
if half_prec:
|
|
input0 = input0.to(torch.float)
|
|
input1 = input1.to(torch.float)
|
|
expected = scipy_fcn(input0.cpu().numpy(), input1.cpu().numpy())
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
@skipCUDAIfRocm # see issue https://github.com/pytorch/pytorch/issues/46531
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@onlyNativeDeviceTypes
|
|
def test_igamma_common(self, device, dtype):
|
|
# test igamma for reasonable range of values
|
|
loglo = -4 # approx 0.018
|
|
loghi = 4 # approx 54.6
|
|
self._helper_test_igamma(loglo, loghi, device, dtype,
|
|
torch.igamma, scipy.special.gammainc)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@onlyNativeDeviceTypes
|
|
def test_igammac_common(self, device, dtype):
|
|
# test igammac for reasonable range of values
|
|
loglo = -4 # approx 0.018
|
|
loghi = 4 # approx 54.6
|
|
self._helper_test_igamma(loglo, loghi, device, dtype,
|
|
torch.igammac, scipy.special.gammaincc)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@onlyNativeDeviceTypes
|
|
def test_igamma_edge_cases(self, device, dtype):
|
|
tkwargs = {"dtype": dtype, "device": device}
|
|
infs = torch.zeros((3,), **tkwargs) + float("inf")
|
|
zeros = torch.zeros((3,), **tkwargs)
|
|
ones = torch.ones((3,), **tkwargs)
|
|
zero_to_large = torch.tensor([0., 1., 1e3], **tkwargs)
|
|
small_to_inf = torch.tensor([1e-3, 1., float("inf")], **tkwargs)
|
|
nans = torch.zeros((3,), **tkwargs) + float("nan")
|
|
inpouts = [
|
|
# (a , x), out
|
|
((zeros, small_to_inf), ones),
|
|
((small_to_inf, zeros), zeros),
|
|
((infs, zero_to_large), zeros),
|
|
((zero_to_large, infs), ones),
|
|
((zeros, zeros), nans),
|
|
((infs, infs), nans),
|
|
((-small_to_inf, small_to_inf), nans),
|
|
]
|
|
for inputs, output in inpouts:
|
|
input0, input1 = inputs
|
|
calc = torch.igamma(input0, input1)
|
|
if torch.all(torch.isnan(output)):
|
|
self.assertTrue(torch.all(torch.isnan(calc)))
|
|
else:
|
|
self.assertEqual(calc, output)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@onlyNativeDeviceTypes
|
|
def test_igammac_edge_cases(self, device, dtype):
|
|
tkwargs = {"dtype": dtype, "device": device}
|
|
infs = torch.zeros((3,), **tkwargs) + float("inf")
|
|
zeros = torch.zeros((3,), **tkwargs)
|
|
ones = torch.ones((3,), **tkwargs)
|
|
zero_to_large = torch.tensor([0., 1., 1e3], **tkwargs)
|
|
small_to_inf = torch.tensor([1e-3, 1., float("inf")], **tkwargs)
|
|
nans = torch.zeros((3,), **tkwargs) + float("nan")
|
|
inpouts = [
|
|
# (a , x), out
|
|
((zeros, small_to_inf), zeros),
|
|
((small_to_inf, zeros), ones),
|
|
((infs, zero_to_large), ones),
|
|
((zero_to_large, infs), zeros),
|
|
((zeros, zeros), nans),
|
|
((infs, infs), nans),
|
|
((-small_to_inf, small_to_inf), nans),
|
|
]
|
|
for inputs, output in inpouts:
|
|
input0, input1 = inputs
|
|
calc = torch.igammac(input0, input1)
|
|
if torch.all(torch.isnan(output)):
|
|
self.assertTrue(torch.all(torch.isnan(calc)))
|
|
else:
|
|
self.assertEqual(calc, output)
|
|
|
|
def _i0_helper(self, t):
|
|
# Test by comparing to scipy
|
|
dtype = t.dtype
|
|
actual = torch.i0(t)
|
|
if dtype is torch.bfloat16:
|
|
t = t.to(torch.float32)
|
|
expected = scipy.special.i0(t.cpu().numpy())
|
|
# Casting down for dtype float16 is required since scipy upcasts to float32
|
|
if dtype is torch.bfloat16 or dtype is torch.float16:
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
def _i0_range_helper(self, range, device, dtype):
|
|
# i0 tests are broken up by the domain for which the function does not overflow for each dtype
|
|
# This is done to ensure that the function performs well across all possible input values, without worrying
|
|
# about inf or nan possibilities
|
|
for r in (range, -range):
|
|
t = torch.rand(1000, device=device).to(dtype) * r
|
|
self._i0_helper(t)
|
|
|
|
@dtypesIfCUDA(*get_all_fp_dtypes())
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range1(self, device, dtype):
|
|
# This tests the domain for i0 for which float16 does not overflow
|
|
# The domain is (-13.25, 13.25)
|
|
self._i0_range_helper(13.25, device, dtype)
|
|
|
|
@dtypesIfCUDA(*get_all_fp_dtypes())
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range2(self, device, dtype):
|
|
# This tests the domain for i0 for which float32 and bfloat16 does not overflow
|
|
# The domain is (-88.5, 88.5)
|
|
self._i0_range_helper(88.5, device, dtype)
|
|
|
|
@dtypes(torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range3(self, device, dtype):
|
|
# This tests the domain for i0 for which float64 does not overflow
|
|
# The domain is (-709.75, 709.75)
|
|
self._i0_range_helper(709.75, device, dtype)
|
|
|
|
@dtypesIfCUDA(*get_all_fp_dtypes())
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_special(self, device, dtype):
|
|
t = torch.tensor([], device=device, dtype=dtype)
|
|
self._i0_helper(t)
|
|
|
|
t = torch.tensor([inf, -inf, nan], device=device, dtype=dtype)
|
|
self.assertTrue(torch.i0(t).isnan().all())
|
|
|
|
@dtypesIfCUDA(*get_all_fp_dtypes())
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_special_i0_i1_vs_scipy(self, device, dtype):
|
|
def check_equal(t, torch_fn, scipy_fn):
|
|
# Test by comparing to scipy
|
|
actual = torch_fn(t)
|
|
if dtype is torch.bfloat16:
|
|
t = t.to(torch.float32)
|
|
expected = scipy_fn(t.cpu().numpy())
|
|
|
|
# Casting down for dtype float16 is required since scipy upcasts to float32
|
|
if dtype is torch.bfloat16 or dtype is torch.float16:
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
t = torch.tensor([], device=device, dtype=dtype)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
range = (-1e7, 1e7)
|
|
if dtype == torch.half:
|
|
range = (-65000, 65000)
|
|
|
|
t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
# NaN, inf, -inf are tested in reference_numerics tests.
|
|
info = torch.finfo(dtype)
|
|
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
|
|
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_special_ndtr_vs_scipy(self, device, dtype):
|
|
def check_equal(t):
|
|
# Test by comparing to scipy
|
|
actual = torch.special.ndtr(t)
|
|
expected = scipy.special.ndtr(t.cpu().numpy())
|
|
self.assertEqual(actual, expected)
|
|
|
|
range = (-10, 10)
|
|
|
|
t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
|
|
check_equal(t)
|
|
|
|
# NaN, inf, -inf are tested in reference_numerics tests.
|
|
info = torch.finfo(dtype)
|
|
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
|
|
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
|
|
check_equal(t)
|
|
|
|
# TODO: allow large opinfo values to be opted-into via metadata
|
|
@dtypes(torch.long)
|
|
def test_abs_big_number(self, device, dtype):
|
|
bignumber = 2 ** 31 + 1
|
|
res = torch.tensor([bignumber], device=device, dtype=dtype)
|
|
self.assertGreater(res.abs()[0], 0)
|
|
|
|
# TODO: add signed zero testing to opinfos
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_signed_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
size = 128 + 1 # pick a large enough number with remainder so that
|
|
# both vectorized and nonvectorized op is tested
|
|
inp = torch.zeros(size, device=device, dtype=dtype)
|
|
inp[::2] = -0.0
|
|
inp = inp.abs()
|
|
for v in inp:
|
|
self.assertGreater(math.copysign(1.0, v), 0.0)
|
|
|
|
# TODO: update to compare against NumPy by rationalizing with OpInfo
|
|
@onlyCUDA
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
|
|
for num in abs_zeros:
|
|
self.assertGreater(math.copysign(1.0, num), 0.0)
|
|
|
|
@dtypes(*(get_all_dtypes(include_bool=False)))
|
|
def test_isposinf_isneginf_non_boolean_output(self, device, dtype):
|
|
# test non-boolean tensors as the `out=` parameters
|
|
# boolean outputs are tested in the above testcases
|
|
vals = (float('inf'), -float('inf'), 1.2)
|
|
t = torch.tensor(vals, device=device)
|
|
for torch_op in (torch.isposinf, torch.isneginf):
|
|
out = torch.empty_like(t, dtype=dtype)
|
|
with self.assertRaisesRegex(RuntimeError, 'does not support non-boolean outputs'):
|
|
torch_op(t, out=out)
|
|
|
|
def test_nonzero_empty(self, device):
|
|
def assert_tuple_empty(tup, dim):
|
|
self.assertEqual(dim, len(tup))
|
|
for t in tup:
|
|
self.assertEqual(torch.Size([0]), t.shape)
|
|
|
|
x = torch.randn(0, 2, 0, 5, 0, device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
|
|
self.assertEqual(0, y.numel())
|
|
self.assertEqual(torch.Size([0, 5]), y.shape)
|
|
assert_tuple_empty(z, 5)
|
|
|
|
x = torch.tensor(0.5, device=device)
|
|
y = torch.nonzero(x)
|
|
# nonzero with as_tuple returns a
|
|
# tuple of len 1 for a zero-dim tensor.
|
|
# This is done to match Numpy behavior.
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])
|
|
|
|
x = torch.zeros((), device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(torch.Size([0, 0]), y.shape)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.empty(0, dtype=torch.long), z[0])
|
|
|
|
# TODO: rationalize with exp OpInfo
|
|
@dtypes(*(get_all_fp_dtypes(include_half=False) +
|
|
get_all_complex_dtypes()))
|
|
@dtypesIfCUDA(*(get_all_fp_dtypes(include_half=True) +
|
|
get_all_complex_dtypes()))
|
|
def test_exp(self, device, dtype):
|
|
for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
|
|
a = torch.tensor(v, dtype=dtype, device=device) * torch.arange(18, device=device) / 3 * math.pi
|
|
a = a.to(dtype)
|
|
# bfloat16 overflows
|
|
if dtype == torch.bfloat16:
|
|
return
|
|
self.compare_with_numpy(torch.exp, np.exp, a)
|
|
|
|
if dtype.is_complex:
|
|
inf_real_zero_imag_in = torch.tensor(complex(float('inf'), 0), device=device, dtype=dtype)
|
|
inf_real_zero_imag_out = torch.exp(inf_real_zero_imag_in).item()
|
|
self.assertTrue(math.isinf(inf_real_zero_imag_out.real))
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# These are commented out because it cannot be consistently reproduced.
|
|
# This is incorrect. It should be zero. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# self.assertNotEqual(inf_real_zero_imag_out.imag, 0)
|
|
# This is incorrect. They should equal. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
else:
|
|
self.assertEqual(inf_real_zero_imag_out.imag, 0, atol=0, rtol=0)
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
|
|
zero_real_inf_imag_in = torch.tensor(complex(0, float('inf')), device=device, dtype=dtype)
|
|
zero_real_inf_imag_out = torch.exp(zero_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, zero_real_inf_imag_in)
|
|
|
|
inf_real_imag_in = torch.tensor(complex(float('inf'), float('inf')), device=device, dtype=dtype)
|
|
inf_real_imag_out = torch.exp(inf_real_imag_in).item()
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# This is incorrect. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
|
|
inf_real_nan_imag_in = torch.tensor(complex(float('inf'), float('nan')), device=device, dtype=dtype)
|
|
inf_real_nan_imag_out = torch.exp(inf_real_nan_imag_in).item()
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# This is incorrect. It should be inf. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_nan_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_nan_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
|
|
nan_real_inf_imag_in = torch.tensor(complex(float('nan'), float('inf')), device=device, dtype=dtype)
|
|
nan_real_inf_imag_out = torch.exp(nan_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, nan_real_inf_imag_in)
|
|
|
|
|
|
instantiate_device_type_tests(TestUnaryUfuncs, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|