pytorch/test/test_unary_ufuncs.py
Mike Ruberry b6f41bb848 The Jiterator (#69439)
Summary:
This PR:

- creates the "jiterator" pattern, allowing elementwise unary and binary kernels that don't accept scalars to be jit compiled when called
- ports the gcd and i1 CUDA kernels to use the jiterator
- extends elementwise binary systemic testing to be comparable to elementwise unary systemic testing
- separates one test case from test_out in test_ops.py
- updates more OpInfos to use expected failures instead of skips

The jiterator currently does not support half, bfloat16 or complex dtypes. It also (as mentioned above) doesn't support scalar inputs. In the future we expect to add support for those datatypes and scalars.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69439

Reviewed By: ngimel

Differential Revision: D32874968

Pulled By: mruberry

fbshipit-source-id: d44bb9cde4f602703e75400ec5a0b209f085e9b3
2021-12-06 07:32:48 -08:00

1425 lines
65 KiB
Python

# Owner(s): ["module: tests"]
import torch
import numpy as np
import math
from itertools import product, chain
from numbers import Number
import random
import unittest
from torch._six import inf, nan
from torch.testing._internal.common_utils import (
TestCase, run_tests, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict,
suppress_warnings, TEST_SCIPY, slowTest, skipIfNoSciPy, IS_WINDOWS, gradcheck)
from torch.testing._internal.common_methods_invocations import (
unary_ufuncs, _NOTHING)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, ops, dtypes, onlyCPU, onlyNativeDeviceTypes,
onlyCUDA, dtypesIfCUDA, precisionOverride, skipCUDAIfRocm, dtypesIfCPU,
OpDTypes)
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
floating_types_and, all_types_and_complex_and, floating_and_complex_types_and, get_all_dtypes, get_all_math_dtypes,
get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
)
if TEST_SCIPY:
import scipy
# Refer [scipy reference filter]
# Filter operators for which the reference function
# is available in the current environment (for reference_numerics tests).
reference_filtered_ops = list(filter(lambda op: op.ref is not _NOTHING, unary_ufuncs))
# Tests for unary "universal functions (ufuncs)" that accept a single
# tensor and have common properties like:
# - they are elementwise functions
# - the input shape is the output shape
# - they typically have method and inplace variants
# - they typically support the out kwarg
# - they typically have NumPy or SciPy references
# See NumPy's universal function documentation
# (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
# about the concept of ufuncs.
# Functions tested here:
#
# Interesting values and extremal values for different dtypes
_unsigned_int_vals = (0, 1, 55, 127)
_int_vals = (0, -1, 1, -55, 55, -127, 127, -128, 128)
_large_int_vals = (-1113, 1113, -10701, 10701)
_float_vals = (0.,
-.001, .001,
-.25, .25,
-1., 1.,
-math.pi / 2, math.pi / 2,
-math.pi + .00001, math.pi - .00001,
-math.pi, math.pi,
-math.pi - .00001, math.pi + .00001)
_large_float16_vals = (-501, 501,
-1001.2, 1001.2,
-13437.7, 13437.7)
_large_float_vals = _large_float16_vals + (-4988429.2, 4988429.2, -1e20, 1e20)
_float_extremals = (float('inf'), float('-inf'), float('nan'))
_medium_length = 812
_large_size = (1029, 917)
# Replace values satisfying condition with a safe value. This is used to block
# out values the could cause singularity like tan(pi/2)
def replace_values_in_tensor(tensor, condition, safe_value):
mask = condition(tensor)
tensor.masked_fill_(mask, safe_value)
# Returns generator of tensors of different sizes filled with values in domain
# and with intested region filled with `vals`. This will help test different code
# paths for the given vals
# `filter_` can be either None or a tuple of (condition, safe_value). When not None
# values satisfying `condition`` will be replaced with `safe_value` in the generated
# tensor. This is useful to avoid singularities when generating inputs for tests, such
# as tan(pi/2)
def generate_tensors_from_vals(vals, device, dtype, domain, filter_):
offset = 63
assert _large_size[1] > (_medium_length + offset) # large tensor should be large enough
assert len(vals) < _medium_length # medium tensor should contain all vals
assert _medium_length % 4 == 0 # ensure vectorized code coverage
if not dtype.is_complex:
# Filter values based on Operators domain.
# Note: Complex numbers don't belong to ordered field,
# so we don't filter for them.
if domain[0] is not None:
vals = list(filter(lambda x: x >= domain[0], vals))
if domain[1] is not None:
vals = list(filter(lambda x: x < domain[1], vals))
if filter_ is not None:
condition, safe_value = filter_
# Constructs the large tensor containing vals
large_tensor = make_tensor(_large_size, device=device, dtype=dtype, low=domain[0], high=domain[1])
# Inserts the vals at an odd place
large_tensor[57][offset:offset + len(vals)] = torch.tensor(vals, device=device, dtype=dtype)
if filter_ is not None:
replace_values_in_tensor(large_tensor, condition, safe_value)
# Takes a medium sized copy of the large tensor containing vals
medium_tensor = large_tensor[57][offset:offset + _medium_length]
if filter_ is not None:
replace_values_in_tensor(medium_tensor, condition, safe_value)
# Constructs scalar tensors
scalar_tensors = (t.squeeze() for t in torch.split(medium_tensor, 1))
# Tensors with no elements
empty_sizes = ((0,), (0, 3, 3), (1, 0, 5), (6, 0, 0, 0), (3, 0, 1, 0))
empty_tensors = (torch.empty(size, device=device, dtype=dtype) for size in empty_sizes)
return chain(empty_tensors, scalar_tensors, (medium_tensor,), (large_tensor,))
# [Note generate_numeric_tensors, generate_numeric_tensors_hard,
# and generate_numeric_tensors_extremal]
#
# Returns an iterable of contiguous tensors with the same storage on the requested
# device and with the requested dtype.
#
# This function is intended to test the non-vectorized and vectorized code
# paths of unary functions, as well as their handling of odd tensor
# sizes (like zero-dim tensors and tensors with zero elements).
#
# The iterable will include an empty tensor, tensors with no elements,
# zero dim (scalar) tensors, small 1D tensors, a medium 1D tensor, and
# a large 2D tensor.
#
# These tensors will include interesting values. The generate_numeric_tensors_hard
# tests larger values (>500) and generate_numeric_tensors_extremal tests extremal
# values like -inf, inf, and nan.
#
# The randomly generated values can be restricted by the domain
# argument.
def generate_numeric_tensors(device, dtype, *,
domain=(None, None),
filter_=None):
# Special-cases bool
if dtype is torch.bool:
tensors = (torch.empty(0, device=device, dtype=torch.bool),
torch.tensor(True, device=device),
torch.tensor(False, device=device),
torch.tensor((True, False), device=device),
make_tensor((_medium_length,), device=device, dtype=dtype, low=None, high=None),
make_tensor(_large_size, device=device, dtype=dtype, low=None, high=None))
return tensors
# Acquires dtype-specific vals
if dtype.is_floating_point or dtype.is_complex:
vals = _float_vals
# Converts float -> complex vals if dtype is complex
if dtype.is_complex:
vals = tuple(complex(x, y) for x, y in product(vals, vals))
elif dtype is torch.uint8:
vals = _unsigned_int_vals
else: # dtypes is a signed integer type
assert dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
vals = _int_vals
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
def generate_numeric_tensors_hard(device, dtype, *,
domain=(None, None),
filter_=None):
is_signed_integral = dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
if not (dtype.is_floating_point or dtype.is_complex or is_signed_integral):
return ()
if dtype.is_floating_point:
if dtype is torch.float16:
# float16 has smaller range.
vals = _large_float16_vals
else:
vals = _large_float_vals
elif dtype.is_complex:
vals = tuple(complex(x, y) for x, y in chain(product(_large_float_vals, _large_float_vals),
product(_float_vals, _large_float_vals),
product(_large_float_vals, _float_vals)))
else:
vals = _large_int_vals
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
def generate_numeric_tensors_extremal(device, dtype, *,
domain=(None, None),
filter_=None):
if not (dtype.is_floating_point or dtype.is_complex):
return ()
vals = []
if dtype.is_floating_point:
vals = _float_extremals
elif dtype.is_complex:
vals = tuple(complex(x, y) for x, y in chain(product(_float_extremals, _float_extremals),
product(_float_vals, _float_extremals),
product(_float_extremals, _float_vals)))
return generate_tensors_from_vals(vals, device, dtype, domain, filter_)
# TODO: port test_unary_out_op_mem_overlap
# TODO: add test for inplace variants erroring on broadcasted inputs
class TestUnaryUfuncs(TestCase):
exact_dtype = True
@ops([_fn for _fn in unary_ufuncs if _fn.domain != (None, None)],
allowed_dtypes=floating_types_and(torch.bfloat16, torch.half))
def test_float_domains(self, device, dtype, op):
eps = (1e-5, 1e-3, 1e-1, 1, 2, 10, 20, 50, 100)
low, high = op.domain
# NOTE: the following two loops are separated for readability
if low is not None:
low_tensor = torch.tensor(low, device=device, dtype=dtype)
for epsilon in eps:
lower_tensor = low_tensor - epsilon
# Skips the test if the difference is not representable,
# which can occur if, for example, the difference is small
# and the dtype is imprecise (like bfloat16 is)
if lower_tensor.item() == low_tensor.item():
continue
result = op(lower_tensor)
self.assertEqual(result.item(), float('nan'),
msg=("input of {0} outside lower domain boundary"
" {1} produced {2}, not nan!").format(lower_tensor.item(),
low,
result.item()))
if high is not None:
high_tensor = torch.tensor(high, device=device, dtype=dtype)
for epsilon in eps:
higher_tensor = high_tensor + epsilon
# See above comment
if higher_tensor.item() == high_tensor.item():
continue
result = op(higher_tensor)
self.assertEqual(result.item(), float('nan'),
msg=("input of {0} outside upper domain boundary"
" {1} produced {2}, not nan!").format(higher_tensor.item(),
high,
result.item()))
# Helper for comparing torch tensors and numpy arrays
# TODO: should this or assertEqual also validate that strides are equal?
def assertEqualHelper(self, actual, expected, msg, *, dtype, exact_dtype=True, **kwargs):
assert isinstance(actual, torch.Tensor)
# Some NumPy functions return scalars, not arrays
if isinstance(expected, Number):
self.assertEqual(actual.item(), expected, msg, **kwargs)
elif isinstance(expected, np.ndarray):
# Handles exact dtype comparisons between arrays and tensors
if exact_dtype:
# Allows array dtype to be float32 when comparing with bfloat16 tensors
# since NumPy doesn't support the bfloat16 dtype
# Also ops like scipy.special.erf, scipy.special.erfc, etc, promote float16
# to float32
if expected.dtype == np.float32:
assert actual.dtype in (torch.float16, torch.bfloat16, torch.float32)
else:
assert expected.dtype == torch_to_numpy_dtype_dict[actual.dtype]
self.assertEqual(actual,
torch.from_numpy(expected).to(actual.dtype),
msg,
exact_device=False,
**kwargs)
else:
self.assertEqual(actual, expected, msg, exact_device=False, **kwargs)
# Tests that the function and its (array-accepting) reference produce the same
# values on given tensors
def _test_reference_numerics(self, dtype, op, tensors, equal_nan=True):
def _helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan=True):
if not torch.can_cast(numpy_to_torch_dtype_dict[expected.dtype.type], dtype):
exact_dtype = False
if dtype in [torch.uint8, torch.int8, torch.bool]:
# NOTE: For these dtypes, PyTorch computes in the default scalar type (float)
# while NumPy computes in float16
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
exact_dtype=exact_dtype, rtol=1e-3, atol=1e-2)
elif dtype is torch.bfloat16:
# Ref: https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_utils.py#L1149
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
exact_dtype=exact_dtype, rtol=16e-3, atol=1e-5)
else:
self.assertEqualHelper(actual, expected, msg, dtype=dtype, equal_nan=equal_nan, exact_dtype=exact_dtype)
for t in tensors:
torch_kwargs, numpy_kwargs = op.sample_kwargs(t.device, dtype, t)
if dtype is torch.bfloat16:
a = t.cpu().to(torch.float32).numpy()
else:
a = t.cpu().numpy()
actual = op(t, **torch_kwargs)
expected = op.ref(a, **numpy_kwargs)
# Crafts a custom error message for smaller, printable tensors
if t.numel() < 10:
msg = ("Failed to produce expected results! Input tensor was"
" {0}, torch result is {1}, and reference result is"
" {2}.").format(t, actual, expected)
else:
msg = None
exact_dtype = True
if isinstance(actual, torch.Tensor):
_helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan)
else:
for x, y in zip(expected, actual):
# testing multi-outputs results
_helper_reference_numerics(x, y, msg, exact_dtype, equal_nan)
# Tests that the function and its (array-accepting) reference produce the same
# values on a range of tensors, including empty tensors, scalar tensors,
# 1D tensors and a large 2D tensor with interesting and extremal values
# and noncontiguities.
@suppress_warnings
@ops(reference_filtered_ops)
def test_reference_numerics_normal(self, device, dtype, op):
tensors = generate_numeric_tensors(device, dtype,
domain=op.domain,
filter_=op.reference_numerics_filter)
self._test_reference_numerics(dtype, op, tensors)
@suppress_warnings
@ops(reference_filtered_ops, allowed_dtypes=floating_and_complex_types_and(
torch.bfloat16, torch.half, torch.int8, torch.int16, torch.int32, torch.int64
))
def test_reference_numerics_hard(self, device, dtype, op):
if not op.handles_large_floats:
raise self.skipTest("This op does not handle large values")
tensors = generate_numeric_tensors_hard(device, dtype,
domain=op.domain)
self._test_reference_numerics(dtype, op, tensors)
@suppress_warnings
@ops(reference_filtered_ops,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half))
def test_reference_numerics_extremal(self, device, dtype, op):
handles_extremals = (op.handles_complex_extremals if
dtype in (torch.cfloat, torch.cdouble) else op.handles_extremals)
if not handles_extremals:
raise self.skipTest("This op does not handle extremal values")
tensors = generate_numeric_tensors_extremal(device, dtype,
domain=op.domain)
self._test_reference_numerics(dtype, op, tensors)
# Tests for testing (non)contiguity consistency
@ops(unary_ufuncs)
def test_contig_vs_every_other(self, device, dtype, op):
contig = make_tensor((1026,), device=device, dtype=dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig[::2]
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, non_contig)
self.assertEqual(op(contig, **torch_kwargs)[::2], op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_contig_vs_transposed(self, device, dtype, op):
contig = make_tensor((789, 357), device=device, dtype=dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig.T
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs).T, op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig(self, device, dtype, op):
shapes = [(5, 7), (1024,)]
for shape in shapes:
contig = make_tensor(shape, device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
non_contig.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig_index(self, device, dtype, op):
contig = make_tensor((2, 2, 1, 2), device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig[:, 1, ...]
contig = non_contig.contiguous()
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig_expand(self, device, dtype, op):
shapes = [(1, 3), (1, 7), (5, 7)]
for shape in shapes:
contig = make_tensor(shape, device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig.clone().expand(3, -1, -1)
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
contig = op(contig, **torch_kwargs)
non_contig = op(non_contig, **torch_kwargs)
for i in range(3):
self.assertEqual(contig, non_contig[i],
msg='non-contiguous expand[' + str(i) + ']')
@ops(unary_ufuncs)
def test_contig_size1(self, device, dtype, op):
contig = make_tensor((5, 100), device, dtype,
low=op.domain[0], high=op.domain[1])
contig = contig[:1, :50]
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
@ops(unary_ufuncs)
def test_contig_size1_large_dim(self, device, dtype, op):
contig = make_tensor((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), device, dtype,
low=op.domain[0], high=op.domain[1])
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
# Tests that computation on a multiple batches is the same as
# per-batch computation.
@ops(unary_ufuncs)
def test_batch_vs_slicing(self, device, dtype, op):
input = make_tensor((1024, 512), dtype=dtype, device=device,
low=op.domain[0], high=op.domain[1])
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
actual = op(input, **torch_kwargs)
expected = torch.stack([op(slice, **torch_kwargs) for slice in input])
self.assertEqual(actual, expected)
def _test_out_arg(self, op, input, output, expected, **kwargs):
if op.safe_casts_outputs:
expect_fail = not torch.can_cast(expected.dtype, output.dtype)
else:
expect_fail = output.dtype != expected.dtype
if expect_fail:
with self.assertRaises(RuntimeError):
op(input, out=output, **kwargs)
else:
res = op(input, out=output, **kwargs)
self.assertTrue(res is output)
self.assertEqual(output, expected.to(output.dtype))
@ops(unary_ufuncs, dtypes=OpDTypes.supported)
def test_out_arg_all_dtypes(self, device, dtype, op):
if not op.supports_out:
self.skipTest("Skipped! Op doesn't support out= kwarg.")
input = make_tensor((64, 64), dtype=dtype, device=device,
low=op.domain[0], high=op.domain[1])
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
expected = op(input, **torch_kwargs)
for out_dtype in all_types_and_complex_and(torch.bool, torch.half):
out = torch.empty_like(input, dtype=out_dtype)
self._test_out_arg(op, input, out, expected, **torch_kwargs)
@dtypes(*(get_all_int_dtypes() + [torch.bool] +
get_all_fp_dtypes(include_bfloat16=False)))
def test_nan_to_num(self, device, dtype):
for contiguous in [False, True]:
x = make_tensor((64, 64), low=0., high=100., dtype=dtype, device=device)
if dtype.is_floating_point:
# Add extremal values.
extremals = [float('nan'), float('inf'), -float('inf')]
for idx, extremal in zip(torch.randint(0, 63, (3,)), extremals):
x[idx, :] = extremal
if not contiguous:
x = x.T
# With args
nan = random.random()
posinf = random.random() * 5
neginf = random.random() * 10
self.compare_with_numpy(lambda x: x.nan_to_num(nan=nan, posinf=posinf),
lambda x: np.nan_to_num(x, nan=nan, posinf=posinf),
x)
self.compare_with_numpy(lambda x: x.nan_to_num(posinf=posinf, neginf=neginf),
lambda x: np.nan_to_num(x, posinf=posinf, neginf=neginf),
x)
# Out Variant
out = torch.empty_like(x)
result = torch.nan_to_num(x)
torch.nan_to_num(x, out=out)
self.assertEqual(result, out)
result = torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
torch.nan_to_num(x, out=out, nan=nan, posinf=posinf, neginf=neginf)
self.assertEqual(result, out)
@dtypes(torch.cdouble)
def test_complex_edge_values(self, device, dtype):
# sqrt Test Reference: https://github.com/pytorch/pytorch/pull/47424
x = torch.tensor(0. - 1.0e+20j, dtype=dtype, device=device)
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
# acos test reference: https://github.com/pytorch/pytorch/issue/42952
# Skip on Windows, as CUDA acos returns conjugate value
# see https://github.com/pytorch/pytorch/issues/52299
if not (IS_WINDOWS and dtype == torch.cdouble and "cuda" in device):
self.compare_with_numpy(torch.acos, np.arccos, x)
x = torch.tensor((-1.0e+60 if dtype == torch.cdouble else -1.0e+20) - 4988429.2j, dtype=dtype, device=device)
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
@dtypes(torch.float, torch.double)
def test_digamma_special(self, device, dtype):
# Based on SciPy test for the following special values.
# Reference:
# https://github.com/scipy/scipy/blob/3a8a3a1d4657254a6611e77e9c28feafa26e6645/scipy/special/tests/test_digamma.py#L22
euler = 0.57721566490153286
dataset = [(0., -0.),
(1, -euler),
(0.5, -2 * math.log(2) - euler),
(1 / 3, -math.pi / (2 * math.sqrt(3)) - 3 * math.log(3) / 2 - euler),
(1 / 4, -math.pi / 2 - 3 * math.log(2) - euler),
(1 / 6, -math.pi * math.sqrt(3) / 2 - 2 * math.log(2) - 3 * math.log(3) / 2 - euler),
(1 / 8, -math.pi / 2 - 4 * math.log(2) -
(math.pi + math.log(2 + math.sqrt(2)) - math.log(2 - math.sqrt(2))) / math.sqrt(2) - euler)]
x = torch.tensor(dataset, device=device, dtype=dtype)
self.compare_with_numpy(torch.digamma, scipy.special.digamma, x)
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
@dtypes(torch.float, torch.double)
def test_digamma(self, device, dtype):
# Tests pole behavior
tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, 0.000000111, -1931.99999994,
-0.000000111, 0, -0, -1, -2, -931], dtype=dtype, device=device)
self.compare_with_numpy(torch.digamma, scipy.special.digamma, tensor)
@skipCUDAIfRocm
@dtypes(*get_all_fp_dtypes(include_half=True, include_bfloat16=False))
def test_frexp(self, device, dtype):
input = make_tensor((50, 50), device, dtype)
mantissa, exponent = torch.frexp(input)
np_mantissa, np_exponent = np.frexp(input.cpu().numpy())
self.assertEqual(mantissa, np_mantissa)
self.assertEqual(exponent, np_exponent)
# torch.frexp returns exponent in int32 to be compatible with np.frexp
self.assertTrue(exponent.dtype == torch.int32)
self.assertTrue(torch_to_numpy_dtype_dict[exponent.dtype] == np_exponent.dtype)
@skipCUDAIfRocm
def test_frexp_assert_raises(self, device):
invalid_input_dtypes = get_all_int_dtypes() + \
get_all_complex_dtypes() + \
[torch.bool]
for dtype in invalid_input_dtypes:
input = make_tensor((50, 50), device, dtype)
with self.assertRaisesRegex(RuntimeError, r"torch\.frexp\(\) only supports floating-point dtypes"):
torch.frexp(input)
for dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False):
input = make_tensor((50, 50), device, dtype)
dtypes = list(all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
dtypes.remove(dtype)
for mantissa_dtype in dtypes:
mantissa = torch.empty_like(input, dtype=mantissa_dtype)
exponent = torch.empty_like(input, dtype=torch.int)
with self.assertRaisesRegex(RuntimeError,
r"torch\.frexp\(\) expects mantissa to have dtype .+ but got .+"):
torch.frexp(input, out=(mantissa, exponent))
dtypes.append(dtype)
dtypes.remove(torch.int)
for exponent_dtype in dtypes:
mantissa = torch.empty_like(input)
exponent = torch.empty_like(input, dtype=exponent_dtype)
with self.assertRaisesRegex(RuntimeError,
r"torch\.frexp\(\) expects exponent to have int dtype but got .+"):
torch.frexp(input, out=(mantissa, exponent))
def test_mvlgamma_argcheck(self, device):
def run_test(d):
input = torch.linspace((d - 2) / 2, 10, 10, device=device)
torch.mvlgamma(input, d)
with self.assertRaisesRegex(RuntimeError, r"All elements must be greater than \(p-1\)/2"):
run_test(3)
def test_polygamma_neg(self, device):
with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'):
torch.polygamma(-1, torch.tensor([1.0, 2.0], device=device))
# TODO resolve with opinfos
@onlyCPU
def test_op_invert(self, device):
res = 0xffff - torch.arange(127, dtype=torch.int8)
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
a = torch.arange(127, dtype=dtype)
self.assertEqual(res.to(dtype), ~a)
self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True]))
# test exceptions
for dtype in (torch.half, torch.float, torch.double):
a = torch.zeros(10, dtype=dtype)
with self.assertRaises(TypeError):
b = ~a
@dtypes(torch.complex64, torch.complex128)
def test_abs_angle_complex_to_float(self, device, dtype):
# Constructs random complex values
from random import random
random_vals = []
for multiplier in (-1, 1, -10, 10, -100, 100):
for _ in range(10):
random_vals.append(complex(random() * multiplier, random() * multiplier))
for vals in (random_vals, []):
a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
t = torch.tensor(vals, device=device, dtype=dtype)
for fn_name in ('abs', 'angle'):
torch_fn = getattr(torch, fn_name)
np_fn = getattr(np, fn_name)
# Tests function
np_result = torch.from_numpy(np_fn(a))
torch_result = torch_fn(t).cpu()
self.assertEqual(np_result, torch_result, exact_dtype=True)
# Tests float out
float_dtype = torch.float32 if dtype is torch.complex64 else torch.float64
np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
float_out = torch.empty_like(t).float()
torch_fn(t, out=float_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_float_out), float_out.cpu())
# Tests float out (resized out)
float_out = torch.empty(1, device=device, dtype=float_dtype)
torch_fn(t, out=float_out)
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
# Tests complex out
np_complex_out = np_fn(a)
complex_out = torch.empty_like(t)
torch_fn(t, out=complex_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
# Tests complex out (resized out)
complex_out = torch.empty(0, device=device, dtype=dtype)
torch_fn(t, out=complex_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
# Tests long out behavior (expected failure)
long_out = torch.empty(0, device=device, dtype=torch.long)
with self.assertRaises(RuntimeError):
torch_fn(t, out=long_out)
# Tests inplace
if fn_name == 'abs':
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
np_fn(a, out=a)
if dtype.is_complex:
with self.assertRaisesRegex(RuntimeError, "In-place abs is not supported for complex tensors."):
torch_inplace_method(t)
return
torch_inplace_method(t)
self.assertEqual(torch.from_numpy(a), t.cpu())
# Note: angle does not have an in-place variant
if fn_name == 'angle':
with self.assertRaises(AttributeError):
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
def check_internal_mem_overlap(self, inplace_op, num_inputs,
dtype, device,
expected_failure=False):
if isinstance(inplace_op, str):
inplace_op = getattr(torch.Tensor, inplace_op)
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
inputs = [input] + [torch.randn_like(input)
for i in range(num_inputs - 1)]
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
def unary_check_input_output_mem_overlap(self, data, sz, op,
expected_failure=False):
def _test(op, output, input):
output_exp = torch.empty_like(output)
op(input, out=output_exp)
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
# output is identical to input:
_test(op, output=data[0:sz], input=data[0:sz])
# output and input are independent:
_test(op, output=data[0:sz], input=data[sz:2 * sz])
# output partially overlaps with input:
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
# TODO: run on non-native device types
@dtypes(torch.double)
def test_unary_out_op_mem_overlap(self, device, dtype):
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
ints = torch.randint(-100, 100, (2 * sz,), device=device)
unary_mem_overlap_cases = [
("abs", doubles, True, True, 'cpu'),
("abs", doubles, True, True, 'cuda'),
("acos", doubles, True, True, 'cpu'),
("acos", doubles, True, True, 'cuda'),
("asin", doubles, True, True, 'cpu'),
("asin", doubles, True, True, 'cuda'),
("atan", doubles, True, True, 'cpu'),
("atan", doubles, True, True, 'cuda'),
("acosh", doubles, True, True, 'cpu'),
("acosh", doubles, True, True, 'cuda'),
("asinh", doubles, True, True, 'cpu'),
("asinh", doubles, True, True, 'cuda'),
("atanh", doubles, True, True, 'cpu'),
("atanh", doubles, True, True, 'cuda'),
("bitwise_not", ints, True, True, 'cpu'),
("bitwise_not", ints, True, True, 'cuda'),
("ceil", doubles, True, True, 'cpu'),
("ceil", doubles, True, True, 'cuda'),
("cos", doubles, True, True, 'cpu'),
("cos", doubles, True, True, 'cuda'),
("cosh", doubles, True, True, 'cpu'),
("cosh", doubles, True, True, 'cuda'),
("digamma", doubles, True, True, 'cpu'),
("erf", doubles, True, True, 'cpu'),
("erf", doubles, True, True, 'cuda'),
("erfc", doubles, True, True, 'cpu'),
("erfc", doubles, True, True, 'cuda'),
("erfinv", doubles, True, True, 'cpu'),
("erfinv", doubles, True, True, 'cuda'),
("exp", doubles, True, True, 'cpu'),
("exp", doubles, True, True, 'cuda'),
("exp2", doubles, True, True, 'cpu'),
("exp2", doubles, True, True, 'cuda'),
("expm1", doubles, True, True, 'cpu'),
("expm1", doubles, True, True, 'cuda'),
("floor", doubles, True, True, 'cpu'),
("floor", doubles, True, True, 'cuda'),
("frac", doubles, True, True, 'cpu'),
("frac", doubles, True, True, 'cuda'),
("i0", doubles, True, True, 'cpu'),
("i0", doubles, True, True, 'cuda'),
("log", positives, True, True, 'cpu'),
("log", positives, True, True, 'cuda'),
("log10", positives, True, True, 'cpu'),
("log10", positives, True, True, 'cuda'),
("log1p", positives, True, True, 'cpu'),
("log1p", positives, True, True, 'cuda'),
("log2", positives, True, True, 'cpu'),
("log2", positives, True, True, 'cuda'),
("neg", doubles, True, True, 'cpu'),
("neg", doubles, True, True, 'cuda'),
("reciprocal", doubles, True, True, 'cpu'),
("reciprocal", doubles, True, True, 'cuda'),
("round", doubles, True, True, 'cpu'),
("round", doubles, True, True, 'cuda'),
("rsqrt", positives, True, True, 'cpu'),
("rsqrt", positives, True, True, 'cuda'),
("sin", doubles, True, True, 'cpu'),
("sin", doubles, True, True, 'cuda'),
("sinh", doubles, True, True, 'cpu'),
("sinh", doubles, False, True, 'cuda'),
("sigmoid", doubles, True, True, 'cpu'),
("sigmoid", doubles, True, True, 'cuda'),
("logit", doubles, True, True, 'cpu'),
("logit", doubles, True, True, 'cuda'),
("sqrt", doubles, True, True, 'cpu'),
("sqrt", doubles, False, True, 'cuda'),
("tan", doubles, True, True, 'cpu'),
("tan", doubles, True, True, 'cuda'),
("tanh", doubles, True, True, 'cpu'),
("tanh", doubles, True, True, 'cuda'),
("trunc", doubles, True, True, 'cpu'),
("trunc", doubles, True, True, 'cuda')
]
for (fn, inputs, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases:
if dev != device:
continue
out_fn = getattr(torch, fn)
in_fn = getattr(torch.Tensor, fn + '_')
self.unary_check_input_output_mem_overlap(inputs, sz, out_fn,
expected_failure=not has_input_output_mem_overlap_check)
self.check_internal_mem_overlap(in_fn, 1, dtype, dev,
expected_failure=not has_internal_mem_overlap_check)
# TODO: opinfo hardshrink
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink(self, device, dtype):
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.3))
self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.5))
# test default lambd=0.5
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
# test non-contiguous case
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
data.t().hardshrink(0.3))
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink_edge_cases(self, device, dtype) -> None:
def h(values, l_expected):
for l, expected in l_expected.items():
values_tensor = torch.tensor([float(v) for v in values],
dtype=dtype, device=device)
expected_tensor = torch.tensor([float(v) for v in expected],
dtype=dtype, device=device)
self.assertEqual(expected_tensor == values_tensor.hardshrink(l),
torch.ones_like(values_tensor, dtype=torch.bool))
def test_helper(min, max):
h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
{0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]})
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
@onlyCPU
@slowTest
@dtypes(torch.float)
def test_exp_slow(self, device, dtype):
# Test for https://github.com/pytorch/pytorch/issues/17271
# This is pretty slow on my Macbook but it only takes a few
# seconds on a beefy Xeon server
a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device))
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
self.assertEqual(a, b.expand(2 ** 31))
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardswish(self, device, dtype):
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
expectedOutput = np.multiply(
inputValues,
np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0)
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
expectedOutputTensor = \
torch.tensor(expectedOutput, dtype=dtype, device=device)
# normal
self.assertEqual(torch.nn.functional.hardswish(inputTensor),
expectedOutputTensor)
# inplace
inputTensorCpy = inputTensor.clone().detach()
torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
self.assertEqual(inputTensorCpy, expectedOutputTensor)
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardsigmoid(self, device, dtype):
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
# normal
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensor),
torch.tensor(expectedOutput, dtype=dtype, device=device))
# inplace
inputTensorCpy = inputTensor.clone().detach()
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
torch.tensor(expectedOutput, dtype=dtype, device=device))
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardsigmoid_backward(self, device, dtype):
inputValues = [-3.0, 3.0, -2.0, 2.0, -6.0, 6.0]
expectedValues = [0.0, 0.0, 1.0 / 6.0, 1.0 / 6.0, 0.0, 0.0]
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device).requires_grad_()
expetedTensor = torch.tensor(expectedValues, dtype=dtype, device=device)
out = torch.nn.functional.hardsigmoid(inputTensor)
out.backward(torch.ones_like(inputTensor))
self.assertEqual(inputTensor.grad, expetedTensor)
@skipIfNoSciPy
@dtypes(torch.float, torch.double)
def test_silu(self, device, dtype):
input_np = np.random.randn(5, 8)
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
input_np = np.concatenate((input_np, special_input), axis=0).astype(
torch_to_numpy_dtype_dict[dtype])
expected_output_np = input_np * scipy.special.expit(input_np)
expected_output = torch.from_numpy(expected_output_np).to(device)
expected_output_noncontig = expected_output.transpose(0, 1)
atol = 1e-6
rtol = 1e-6
input = torch.from_numpy(input_np).clone().contiguous().to(device)
self.assertEqual(torch.nn.functional.silu(input), expected_output,
atol=atol, rtol=rtol)
self.assertEqual(torch.nn.functional.silu(input, inplace=True),
expected_output, atol=atol, rtol=rtol)
input = torch.from_numpy(input_np).clone().to(device)
input_noncontig = input.transpose(0, 1)
self.assertEqual(torch.nn.functional.silu(input_noncontig),
expected_output_noncontig, atol=atol, rtol=rtol)
self.assertEqual(torch.nn.functional.silu(
input_noncontig, inplace=True), expected_output_noncontig,
atol=atol, rtol=rtol)
# It is not obvious how to merge this into OpInfo becuase these inputs
# succeed for gradcheck but are expected to fail for gradgradcheck
@dtypes(torch.double)
def test_sinc(self, device, dtype):
# The derivative of sinc(x) at x=0 has to be special cased.
# A naive computation will result in 0/0 -> NaN.
# We also need to be careful when we are very close to 0, as the
# derivative's denominator is squared, and there are some floats
# that are positive and whose squares are zero.
a = torch.tensor([0.0, torch.finfo(torch.double).tiny, 1.0],
dtype=dtype,
requires_grad=True,
device=device)
gradcheck(torch.sinc, a)
@skipIfNoSciPy
@dtypes(torch.float, torch.double)
def test_mish(self, device, dtype):
input_np = np.random.randn(5, 8)
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
input_np = np.concatenate((input_np, special_input), axis=0).astype(
torch_to_numpy_dtype_dict[dtype])
expected_output_np = input_np * np.tanh(np.log1p(np.exp(input_np)))
expected_output = torch.from_numpy(expected_output_np).to(device)
expected_output_noncontig = expected_output.transpose(0, 1)
atol = 1e-6
rtol = 1e-6
input = torch.from_numpy(input_np).clone().contiguous().to(device)
self.assertEqual(torch.nn.functional.mish(input), expected_output,
atol=atol, rtol=rtol)
self.assertEqual(torch.nn.functional.mish(input, inplace=True),
expected_output, atol=atol, rtol=rtol)
input = torch.from_numpy(input_np).clone().to(device)
input_noncontig = input.transpose(0, 1)
self.assertEqual(torch.nn.functional.mish(input_noncontig),
expected_output_noncontig, atol=atol, rtol=rtol)
self.assertEqual(torch.nn.functional.mish(
input_noncontig, inplace=True), expected_output_noncontig,
atol=atol, rtol=rtol)
# do ops like threshold need a test_unary(_nonufunc) test suite?
@onlyCPU
@dtypes(*get_all_math_dtypes('cpu'))
def test_threshold(self, device, dtype):
if dtype != torch.uint8 and dtype != torch.float16 and not dtype.is_complex:
# 100 is wide enough to use AVX2 instructions for all types
x = torch.randn(100, dtype=torch.float, device=device).sign().to(dtype=dtype)
y = torch.threshold(x, 0, 0)
self.assertTrue(y.le(0).any())
def _helper_test_igamma(self, loglo, loghi, device, dtype,
torch_fcn, scipy_fcn):
exp1 = 2.71828182846
vec1 = torch.logspace(loglo, loghi, steps=500, base=exp1,
dtype=torch.float64, device=device).unsqueeze(-1)
vec1 = vec1.to(dtype)
inputs = [
(vec1, vec1.transpose(0, 1)),
(vec1, vec1), # for large number, it should approach 0.5
(vec1, 0.5 * vec1), # test for considerable ratio
(vec1, 2.0 * vec1),
(vec1[::2, :], vec1[::2, :]), # contiguous/noncontiguous tests
(vec1[::2, :], vec1[:vec1.shape[0] // 2, :]),
(vec1[:vec1.shape[0] // 2, :], vec1[::2, :]),
]
half_prec = dtype in [torch.bfloat16, torch.float16]
for input0, input1 in inputs:
actual = torch_fcn(input0, input1)
if half_prec:
input0 = input0.to(torch.float)
input1 = input1.to(torch.float)
expected = scipy_fcn(input0.cpu().numpy(), input1.cpu().numpy())
expected = torch.from_numpy(expected).to(dtype)
self.assertEqual(actual, expected)
@skipCUDAIfRocm # see issue https://github.com/pytorch/pytorch/issues/46531
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
@dtypes(torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@onlyNativeDeviceTypes
def test_igamma_common(self, device, dtype):
# test igamma for reasonable range of values
loglo = -4 # approx 0.018
loghi = 4 # approx 54.6
self._helper_test_igamma(loglo, loghi, device, dtype,
torch.igamma, scipy.special.gammainc)
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
@dtypes(torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@onlyNativeDeviceTypes
def test_igammac_common(self, device, dtype):
# test igammac for reasonable range of values
loglo = -4 # approx 0.018
loghi = 4 # approx 54.6
self._helper_test_igamma(loglo, loghi, device, dtype,
torch.igammac, scipy.special.gammaincc)
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
@dtypes(torch.float32, torch.float64)
@onlyNativeDeviceTypes
def test_igamma_edge_cases(self, device, dtype):
tkwargs = {"dtype": dtype, "device": device}
infs = torch.zeros((3,), **tkwargs) + float("inf")
zeros = torch.zeros((3,), **tkwargs)
ones = torch.ones((3,), **tkwargs)
zero_to_large = torch.tensor([0., 1., 1e3], **tkwargs)
small_to_inf = torch.tensor([1e-3, 1., float("inf")], **tkwargs)
nans = torch.zeros((3,), **tkwargs) + float("nan")
inpouts = [
# (a , x), out
((zeros, small_to_inf), ones),
((small_to_inf, zeros), zeros),
((infs, zero_to_large), zeros),
((zero_to_large, infs), ones),
((zeros, zeros), nans),
((infs, infs), nans),
((-small_to_inf, small_to_inf), nans),
]
for inputs, output in inpouts:
input0, input1 = inputs
calc = torch.igamma(input0, input1)
if torch.all(torch.isnan(output)):
self.assertTrue(torch.all(torch.isnan(calc)))
else:
self.assertEqual(calc, output)
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
@dtypes(torch.float32, torch.float64)
@onlyNativeDeviceTypes
def test_igammac_edge_cases(self, device, dtype):
tkwargs = {"dtype": dtype, "device": device}
infs = torch.zeros((3,), **tkwargs) + float("inf")
zeros = torch.zeros((3,), **tkwargs)
ones = torch.ones((3,), **tkwargs)
zero_to_large = torch.tensor([0., 1., 1e3], **tkwargs)
small_to_inf = torch.tensor([1e-3, 1., float("inf")], **tkwargs)
nans = torch.zeros((3,), **tkwargs) + float("nan")
inpouts = [
# (a , x), out
((zeros, small_to_inf), zeros),
((small_to_inf, zeros), ones),
((infs, zero_to_large), ones),
((zero_to_large, infs), zeros),
((zeros, zeros), nans),
((infs, infs), nans),
((-small_to_inf, small_to_inf), nans),
]
for inputs, output in inpouts:
input0, input1 = inputs
calc = torch.igammac(input0, input1)
if torch.all(torch.isnan(output)):
self.assertTrue(torch.all(torch.isnan(calc)))
else:
self.assertEqual(calc, output)
def _i0_helper(self, t):
# Test by comparing to scipy
dtype = t.dtype
actual = torch.i0(t)
if dtype is torch.bfloat16:
t = t.to(torch.float32)
expected = scipy.special.i0(t.cpu().numpy())
# Casting down for dtype float16 is required since scipy upcasts to float32
if dtype is torch.bfloat16 or dtype is torch.float16:
expected = torch.from_numpy(expected).to(dtype)
self.assertEqual(actual, expected)
def _i0_range_helper(self, range, device, dtype):
# i0 tests are broken up by the domain for which the function does not overflow for each dtype
# This is done to ensure that the function performs well across all possible input values, without worrying
# about inf or nan possibilities
for r in (range, -range):
t = torch.rand(1000, device=device).to(dtype) * r
self._i0_helper(t)
@dtypesIfCUDA(*get_all_fp_dtypes())
@dtypes(torch.bfloat16, torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_i0_range1(self, device, dtype):
# This tests the domain for i0 for which float16 does not overflow
# The domain is (-13.25, 13.25)
self._i0_range_helper(13.25, device, dtype)
@dtypesIfCUDA(*get_all_fp_dtypes())
@dtypes(torch.bfloat16, torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_i0_range2(self, device, dtype):
# This tests the domain for i0 for which float32 and bfloat16 does not overflow
# The domain is (-88.5, 88.5)
self._i0_range_helper(88.5, device, dtype)
@dtypes(torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_i0_range3(self, device, dtype):
# This tests the domain for i0 for which float64 does not overflow
# The domain is (-709.75, 709.75)
self._i0_range_helper(709.75, device, dtype)
@dtypesIfCUDA(*get_all_fp_dtypes())
@dtypes(torch.bfloat16, torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_i0_special(self, device, dtype):
t = torch.tensor([], device=device, dtype=dtype)
self._i0_helper(t)
t = torch.tensor([inf, -inf, nan], device=device, dtype=dtype)
self.assertTrue(torch.i0(t).isnan().all())
@dtypesIfCUDA(*get_all_fp_dtypes())
@dtypes(torch.bfloat16, torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_special_i0_i1_vs_scipy(self, device, dtype):
def check_equal(t, torch_fn, scipy_fn):
# Test by comparing to scipy
actual = torch_fn(t)
if dtype is torch.bfloat16:
t = t.to(torch.float32)
expected = scipy_fn(t.cpu().numpy())
# Casting down for dtype float16 is required since scipy upcasts to float32
if dtype is torch.bfloat16 or dtype is torch.float16:
expected = torch.from_numpy(expected).to(dtype)
self.assertEqual(actual, expected)
t = torch.tensor([], device=device, dtype=dtype)
check_equal(t, torch.i0, scipy.special.i0)
check_equal(t, torch.special.i0e, scipy.special.i0e)
if dtype not in [torch.half, torch.bfloat16]:
check_equal(t, torch.special.i1, scipy.special.i1)
check_equal(t, torch.special.i1e, scipy.special.i1e)
range = (-1e7, 1e7)
if dtype == torch.half:
range = (-65000, 65000)
t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
check_equal(t, torch.i0, scipy.special.i0)
check_equal(t, torch.special.i0e, scipy.special.i0e)
if dtype not in [torch.half, torch.bfloat16]:
check_equal(t, torch.special.i1, scipy.special.i1)
check_equal(t, torch.special.i1e, scipy.special.i1e)
# NaN, inf, -inf are tested in reference_numerics tests.
info = torch.finfo(dtype)
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
check_equal(t, torch.i0, scipy.special.i0)
check_equal(t, torch.special.i0e, scipy.special.i0e)
if dtype not in [torch.half, torch.bfloat16]:
check_equal(t, torch.special.i1, scipy.special.i1)
check_equal(t, torch.special.i1e, scipy.special.i1e)
@dtypes(torch.float32, torch.float64)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_special_ndtr_vs_scipy(self, device, dtype):
def check_equal(t):
# Test by comparing to scipy
actual = torch.special.ndtr(t)
expected = scipy.special.ndtr(t.cpu().numpy())
self.assertEqual(actual, expected)
range = (-10, 10)
t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
check_equal(t)
# NaN, inf, -inf are tested in reference_numerics tests.
info = torch.finfo(dtype)
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
check_equal(t)
# TODO: allow large opinfo values to be opted-into via metadata
@dtypes(torch.long)
def test_abs_big_number(self, device, dtype):
bignumber = 2 ** 31 + 1
res = torch.tensor([bignumber], device=device, dtype=dtype)
self.assertGreater(res.abs()[0], 0)
# TODO: add signed zero testing to opinfos
@dtypes(torch.float, torch.double)
def test_abs_signed_zero(self, device, dtype):
# Both abs(0.0) and abs(-0.0) should result in 0.0
size = 128 + 1 # pick a large enough number with remainder so that
# both vectorized and nonvectorized op is tested
inp = torch.zeros(size, device=device, dtype=dtype)
inp[::2] = -0.0
inp = inp.abs()
for v in inp:
self.assertGreater(math.copysign(1.0, v), 0.0)
# TODO: update to compare against NumPy by rationalizing with OpInfo
@onlyCUDA
@dtypes(torch.float, torch.double)
def test_abs_zero(self, device, dtype):
# Both abs(0.0) and abs(-0.0) should result in 0.0
abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
for num in abs_zeros:
self.assertGreater(math.copysign(1.0, num), 0.0)
@dtypes(*(get_all_dtypes(include_bool=False)))
def test_isposinf_isneginf_non_boolean_output(self, device, dtype):
# test non-boolean tensors as the `out=` parameters
# boolean outputs are tested in the above testcases
vals = (float('inf'), -float('inf'), 1.2)
t = torch.tensor(vals, device=device)
for torch_op in (torch.isposinf, torch.isneginf):
out = torch.empty_like(t, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, 'does not support non-boolean outputs'):
torch_op(t, out=out)
def test_nonzero_empty(self, device):
def assert_tuple_empty(tup, dim):
self.assertEqual(dim, len(tup))
for t in tup:
self.assertEqual(torch.Size([0]), t.shape)
x = torch.randn(0, 2, 0, 5, 0, device=device)
y = torch.nonzero(x)
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(0, y.numel())
self.assertEqual(torch.Size([0, 5]), y.shape)
assert_tuple_empty(z, 5)
x = torch.tensor(0.5, device=device)
y = torch.nonzero(x)
# nonzero with as_tuple returns a
# tuple of len 1 for a zero-dim tensor.
# This is done to match Numpy behavior.
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(1, len(z))
self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])
x = torch.zeros((), device=device)
y = torch.nonzero(x)
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(torch.Size([0, 0]), y.shape)
self.assertEqual(1, len(z))
self.assertEqual(torch.empty(0, dtype=torch.long), z[0])
# TODO: rationalize with exp OpInfo
@dtypes(*(get_all_fp_dtypes(include_half=False) +
get_all_complex_dtypes()))
@dtypesIfCUDA(*(get_all_fp_dtypes(include_half=True) +
get_all_complex_dtypes()))
def test_exp(self, device, dtype):
for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
a = torch.tensor(v, dtype=dtype, device=device) * torch.arange(18, device=device) / 3 * math.pi
a = a.to(dtype)
# bfloat16 overflows
if dtype == torch.bfloat16:
return
self.compare_with_numpy(torch.exp, np.exp, a)
if dtype.is_complex:
inf_real_zero_imag_in = torch.tensor(complex(float('inf'), 0), device=device, dtype=dtype)
inf_real_zero_imag_out = torch.exp(inf_real_zero_imag_in).item()
self.assertTrue(math.isinf(inf_real_zero_imag_out.real))
if self.device_type == 'cpu':
pass
# These are commented out because it cannot be consistently reproduced.
# This is incorrect. It should be zero. Need fix!
# https://github.com/pytorch/pytorch/issues/40590
# self.assertNotEqual(inf_real_zero_imag_out.imag, 0)
# This is incorrect. They should equal. Need fix!
# https://github.com/pytorch/pytorch/issues/40590
# with self.assertRaises(AssertionError):
# self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
else:
self.assertEqual(inf_real_zero_imag_out.imag, 0, atol=0, rtol=0)
self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
zero_real_inf_imag_in = torch.tensor(complex(0, float('inf')), device=device, dtype=dtype)
zero_real_inf_imag_out = torch.exp(zero_real_inf_imag_in).item()
self.assertTrue(math.isnan(zero_real_inf_imag_out.real))
self.assertTrue(math.isnan(zero_real_inf_imag_out.imag))
# Ensure we are notified when NumPy changes its behavior
self.compare_with_numpy(torch.exp, np.exp, zero_real_inf_imag_in)
inf_real_imag_in = torch.tensor(complex(float('inf'), float('inf')), device=device, dtype=dtype)
inf_real_imag_out = torch.exp(inf_real_imag_in).item()
if self.device_type == 'cpu':
pass
# This is incorrect. Need fix! https://github.com/pytorch/pytorch/issues/40590
# This is commented out because it cannot be consistently reproduced.
# with self.assertRaises(AssertionError):
# self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
else:
self.assertTrue(math.isinf(inf_real_imag_out.real))
self.assertTrue(math.isnan(inf_real_imag_out.imag))
self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
inf_real_nan_imag_in = torch.tensor(complex(float('inf'), float('nan')), device=device, dtype=dtype)
inf_real_nan_imag_out = torch.exp(inf_real_nan_imag_in).item()
if self.device_type == 'cpu':
pass
# This is incorrect. It should be inf. Need fix! https://github.com/pytorch/pytorch/issues/40590
# This is commented out because it cannot be consistently reproduced.
# with self.assertRaises(AssertionError):
# self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
else:
self.assertTrue(math.isinf(inf_real_nan_imag_out.real))
self.assertTrue(math.isnan(inf_real_nan_imag_out.imag))
self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
nan_real_inf_imag_in = torch.tensor(complex(float('nan'), float('inf')), device=device, dtype=dtype)
nan_real_inf_imag_out = torch.exp(nan_real_inf_imag_in).item()
self.assertTrue(math.isnan(nan_real_inf_imag_out.real))
self.assertTrue(math.isnan(nan_real_inf_imag_out.imag))
# Ensure we are notified when NumPy changes its behavior
self.compare_with_numpy(torch.exp, np.exp, nan_real_inf_imag_in)
instantiate_device_type_tests(TestUnaryUfuncs, globals())
if __name__ == '__main__':
run_tests()