mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98032 Approved by: https://github.com/albanD
452 lines
16 KiB
Python
452 lines
16 KiB
Python
import collections
|
|
import dataclasses
|
|
import functools
|
|
import inspect
|
|
from typing import Dict, List
|
|
|
|
from .. import variables
|
|
from ..bytecode_transformation import create_call_function, create_instruction
|
|
from ..eval_frame import skip_code
|
|
from ..exc import unimplemented
|
|
from ..source import AttrSource, GlobalWeakRefSource
|
|
from ..utils import global_key_name, istensor
|
|
from .base import MutableLocal, VariableTracker
|
|
from .constant import ConstantVariable
|
|
from .tensor import TensorVariable
|
|
|
|
|
|
class ConstDictVariable(VariableTracker):
|
|
def __init__(self, items, user_cls, recursively_contains=None, **kwargs):
|
|
super().__init__(recursively_contains=recursively_contains, **kwargs)
|
|
|
|
self.guards.update(VariableTracker.propagate(items.values())["guards"])
|
|
self.items = items
|
|
self.user_cls = user_cls
|
|
|
|
def as_proxy(self):
|
|
return {k: v.as_proxy() for k, v in self.items.items()}
|
|
|
|
def as_python_constant(self):
|
|
return {k: v.as_python_constant() for k, v in self.items.items()}
|
|
|
|
def python_type(self):
|
|
return self.user_cls
|
|
|
|
def reconstruct(self, codegen):
|
|
# instructions to load collections.OrderedDict if necessary
|
|
if self.user_cls is collections.OrderedDict:
|
|
codegen.extend_output(
|
|
[
|
|
codegen.create_load_python_module(collections, True),
|
|
codegen.create_load_attr("OrderedDict"),
|
|
]
|
|
)
|
|
# instructions to build the dict keys and values
|
|
for key in self.items.keys():
|
|
if istensor(key):
|
|
codegen.append_output(
|
|
codegen.create_load_global(global_key_name(key), True, add=True)
|
|
)
|
|
codegen.extend_output(create_call_function(0, False))
|
|
else:
|
|
codegen.append_output(codegen.create_load_const(key))
|
|
codegen(self.items[key])
|
|
# BUILD_MAP and calling collections.OrderedDict if necessary
|
|
if self.user_cls is collections.OrderedDict:
|
|
return [
|
|
create_instruction("BUILD_MAP", arg=len(self.items)),
|
|
*create_call_function(1, False),
|
|
]
|
|
# BUILD_MAP only if user_cls is dict
|
|
else:
|
|
return [create_instruction("BUILD_MAP", arg=len(self.items))]
|
|
|
|
def getitem_const(self, arg: VariableTracker):
|
|
return self.items[ConstDictVariable.get_key(arg)].add_options(self, arg)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import ConstantVariable, TupleVariable
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
val = self.items
|
|
|
|
if name == "__getitem__":
|
|
return self.getitem_const(args[0])
|
|
|
|
elif name == "items":
|
|
assert not (args or kwargs)
|
|
return TupleVariable(
|
|
[
|
|
TupleVariable(
|
|
[
|
|
ConstDictVariable._key_to_var(
|
|
tx,
|
|
k,
|
|
**options,
|
|
),
|
|
v,
|
|
],
|
|
**options,
|
|
)
|
|
for k, v in val.items()
|
|
],
|
|
**options,
|
|
)
|
|
elif name == "keys":
|
|
assert not (args or kwargs)
|
|
return TupleVariable(
|
|
[
|
|
ConstDictVariable._key_to_var(
|
|
tx,
|
|
k,
|
|
**options,
|
|
)
|
|
for k in val.keys()
|
|
],
|
|
**options,
|
|
)
|
|
|
|
elif name == "values":
|
|
assert not (args or kwargs)
|
|
return TupleVariable(list(val.values()), **options)
|
|
elif name == "__len__":
|
|
assert not (args or kwargs)
|
|
return ConstantVariable(len(self.items), **options)
|
|
elif (
|
|
name == "__setitem__"
|
|
and args
|
|
and ConstDictVariable.is_valid_key(args[0])
|
|
and self.mutable_local
|
|
):
|
|
assert not kwargs and len(args) == 2
|
|
k = ConstDictVariable.get_key(args[0])
|
|
|
|
if istensor(k):
|
|
tx.store_dict_key(global_key_name(k), k)
|
|
newval = collections.OrderedDict(val)
|
|
newval[k] = args[1]
|
|
|
|
new_rec_contains = self.recursively_contains.union(
|
|
args[1].recursively_contains
|
|
)
|
|
if args[1].mutable_local is not None:
|
|
new_rec_contains.add(args[1].mutable_local)
|
|
|
|
return tx.replace_all(
|
|
self,
|
|
self.modifed(newval, new_rec_contains, **options),
|
|
)
|
|
elif (
|
|
name in ("pop", "get")
|
|
and args
|
|
and ConstDictVariable.is_valid_key(args[0])
|
|
and ConstDictVariable.get_key(args[0]) not in self.items
|
|
and len(args) == 2
|
|
):
|
|
# missing item, return the default value
|
|
return args[1].add_options(options)
|
|
elif (
|
|
name == "pop"
|
|
and args
|
|
and ConstDictVariable.is_valid_key(args[0])
|
|
and self.mutable_local
|
|
):
|
|
newval = collections.OrderedDict(val)
|
|
result = newval.pop(ConstDictVariable.get_key(args[0]))
|
|
tx.replace_all(self, self.modifed(newval, None, **options))
|
|
return result.add_options(options)
|
|
elif (
|
|
name == "update"
|
|
and args
|
|
and isinstance(args[0], ConstDictVariable)
|
|
and self.mutable_local
|
|
):
|
|
newval = collections.OrderedDict(val)
|
|
newval.update(args[0].items)
|
|
new_rec_contains = self.recursively_contains.union(
|
|
args[0].recursively_contains
|
|
)
|
|
result = self.modifed(
|
|
newval, recursively_contains=new_rec_contains, **options
|
|
)
|
|
return tx.replace_all(self, result)
|
|
elif (
|
|
name in ("get", "__getattr__")
|
|
and args
|
|
and ConstDictVariable.is_valid_key(args[0])
|
|
and ConstDictVariable.get_key(args[0]) in self.items
|
|
):
|
|
result = self.items[ConstDictVariable.get_key(args[0])]
|
|
return result.add_options(options)
|
|
elif (
|
|
name == "__contains__" and args and ConstDictVariable.is_valid_key(args[0])
|
|
):
|
|
return ConstantVariable(
|
|
ConstDictVariable.get_key(args[0]) in self.items, **options
|
|
)
|
|
else:
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def modifed(self, items, recursively_contains, **options):
|
|
"""a copy of self with different items"""
|
|
return self.clone(
|
|
items=items, recursively_contains=recursively_contains, **options
|
|
)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
options = VariableTracker.propagate([self])
|
|
val = self.items
|
|
result = [ConstDictVariable._key_to_var(tx, k, **options) for k in val.keys()]
|
|
return result
|
|
|
|
@classmethod
|
|
def get_key(cls, arg: VariableTracker):
|
|
if isinstance(arg, TensorVariable) and arg.specialized_value is not None:
|
|
return arg.specialized_value
|
|
else:
|
|
return arg.as_python_constant()
|
|
|
|
@classmethod
|
|
def is_valid_key(cls, key):
|
|
return (
|
|
key.is_python_constant()
|
|
or isinstance(key, TensorVariable)
|
|
and key.specialized_value is not None
|
|
)
|
|
|
|
@classmethod
|
|
def _key_to_var(cls, tx, key, **options):
|
|
from .builder import VariableBuilder
|
|
|
|
if istensor(key):
|
|
return VariableBuilder(tx, GlobalWeakRefSource(global_key_name(key)))(key)
|
|
else:
|
|
assert ConstantVariable.is_literal(key)
|
|
return ConstantVariable(key, **options)
|
|
|
|
|
|
class DefaultDictVariable(ConstDictVariable):
|
|
def __init__(self, items, user_cls, default_factory=None, **kwargs):
|
|
super().__init__(items, user_cls, **kwargs)
|
|
assert user_cls is collections.defaultdict
|
|
self.default_factory = default_factory
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import ListVariable, TupleVariable
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
|
|
if name == "__getitem__":
|
|
k = ConstDictVariable.get_key(args[0])
|
|
|
|
if k in self.items:
|
|
return self.getitem_const(args[0])
|
|
else:
|
|
if self.default_factory is None:
|
|
raise KeyError(f"{k}")
|
|
else:
|
|
if istensor(k):
|
|
tx.store_dict_key(global_key_name(k), k)
|
|
new_val = collections.OrderedDict(self.items)
|
|
if self.default_factory is list:
|
|
default_var = ListVariable([], mutable_local=MutableLocal())
|
|
elif self.default_factory is tuple:
|
|
default_var = TupleVariable([], mutable_local=MutableLocal())
|
|
elif self.default_factory is dict:
|
|
default_var = ConstDictVariable(
|
|
{}, dict, mutable_local=MutableLocal()
|
|
)
|
|
else:
|
|
unimplemented(
|
|
f"defaultdict with default_factory = {self.default_factory}"
|
|
)
|
|
new_val[k] = default_var
|
|
new_rec_contains = self.recursively_contains.union(
|
|
default_var.recursively_contains
|
|
)
|
|
if default_var.mutable_local is not None:
|
|
new_rec_contains.add(default_var.mutable_local)
|
|
tx.replace_all(
|
|
self, self.modifed(new_val, new_rec_contains, **options)
|
|
)
|
|
return default_var
|
|
else:
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
|
|
class DataClassVariable(ConstDictVariable):
|
|
"""
|
|
This is a bit of a hack to deal with
|
|
transformers.file_utils.ModelOutput() from huggingface.
|
|
|
|
ModelOutput causes trouble because it a a mix of a dataclass and a
|
|
OrderedDict and it calls super() methods implemented in C.
|
|
"""
|
|
|
|
# ModelOutput() excludes None, though generic datclasses don't
|
|
include_none = False
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _patch_once():
|
|
from transformers.file_utils import ModelOutput
|
|
|
|
for obj in ModelOutput.__dict__.values():
|
|
if callable(obj):
|
|
skip_code(obj.__code__)
|
|
|
|
@staticmethod
|
|
def is_matching_cls(cls):
|
|
try:
|
|
from transformers.file_utils import ModelOutput
|
|
|
|
return issubclass(cls, ModelOutput)
|
|
except ImportError:
|
|
return False
|
|
|
|
@classmethod
|
|
def is_matching_object(cls, obj):
|
|
return cls.is_matching_cls(type(obj))
|
|
|
|
@classmethod
|
|
def create(cls, user_cls, args, kwargs, options):
|
|
DataClassVariable._patch_once()
|
|
|
|
skip_code(user_cls.__init__.__code__)
|
|
keys = [f.name for f in dataclasses.fields(user_cls)]
|
|
bound = inspect.signature(user_cls).bind(*args, **kwargs)
|
|
bound.apply_defaults()
|
|
assert set(bound.arguments.keys()) == set(keys)
|
|
items = collections.OrderedDict()
|
|
for key in keys:
|
|
val = bound.arguments[key]
|
|
if isinstance(val, VariableTracker):
|
|
items[key] = val
|
|
else:
|
|
if cls.include_none:
|
|
assert variables.ConstantVariable.is_literal(val)
|
|
items[key] = variables.ConstantVariable(val)
|
|
else:
|
|
assert val is None, f"unexpected {val}"
|
|
|
|
if len(items) == 1 and not isinstance(items[keys[0]], variables.TensorVariable):
|
|
unimplemented("DataClassVariable iterator constructor")
|
|
# TODO(jansel): implement unpacking logic in ModelOutput.__post_init__
|
|
|
|
return cls(items, user_cls, **options)
|
|
|
|
@classmethod
|
|
def wrap(cls, builder, obj):
|
|
user_cls = type(obj)
|
|
keys = [f.name for f in dataclasses.fields(user_cls)]
|
|
|
|
excluded = []
|
|
items = collections.OrderedDict()
|
|
for key in keys:
|
|
# __init__ function of a dataclass might not have yet defined the key
|
|
if hasattr(obj, key):
|
|
val = getattr(obj, key)
|
|
var = builder.__class__(
|
|
tx=builder.tx, source=AttrSource(builder.source, key)
|
|
)(val)
|
|
if val is not None or cls.include_none:
|
|
items[key] = var
|
|
else:
|
|
excluded.append(var)
|
|
return cls(
|
|
items, user_cls, **VariableTracker.propagate(excluded, items.values())
|
|
)
|
|
|
|
def __init__(self, items, user_cls, **options):
|
|
super().__init__(items, user_cls, **options)
|
|
assert self.is_matching_cls(user_cls)
|
|
|
|
def as_proxy(self):
|
|
raise NotImplementedError()
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen.extend_output([codegen._create_load_const(self.user_cls)])
|
|
keys = tuple(self.items.keys())
|
|
for key in keys:
|
|
codegen(self.items[key])
|
|
return codegen.create_call_function_kw(len(keys), keys, True)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
if name == "__getitem__":
|
|
assert not kwargs and len(args) == 1
|
|
index = args[0].as_python_constant()
|
|
if isinstance(index, str):
|
|
return self.items[index].add_options(options)
|
|
else:
|
|
return (
|
|
self.call_method(tx, "to_tuple", [], {})
|
|
.call_method(tx, "__getitem__", args, kwargs)
|
|
.add_options(options)
|
|
)
|
|
elif name == "to_tuple":
|
|
assert not (args or kwargs)
|
|
return variables.TupleVariable(list(self.items.values()), **options)
|
|
elif name == "__setattr__":
|
|
name = "__setitem__"
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
|
if name in self.items:
|
|
return self.call_method(
|
|
tx, "__getitem__", [variables.ConstantVariable(name)], {}
|
|
)
|
|
elif not self.include_none:
|
|
defaults = {f.name: f.default for f in dataclasses.fields(self.user_cls)}
|
|
if name in defaults:
|
|
assert variables.ConstantVariable.is_literal(defaults[name])
|
|
return variables.ConstantVariable(defaults[name]).add_options(self)
|
|
super().var_getattr(tx, name)
|
|
|
|
|
|
class HFPretrainedConfigVariable(VariableTracker):
|
|
"""
|
|
Hack for HuggingFace PretrainedConfig
|
|
"""
|
|
|
|
@staticmethod
|
|
def is_matching_cls(cls):
|
|
try:
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
return issubclass(cls, PretrainedConfig)
|
|
except ImportError:
|
|
return False
|
|
|
|
@classmethod
|
|
def is_matching_object(cls, obj):
|
|
return cls.is_matching_cls(type(obj))
|
|
|
|
def __init__(self, obj, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.obj = obj
|
|
assert self.is_matching_cls(type(obj))
|
|
|
|
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
|
from . import ConstantVariable
|
|
|
|
return ConstantVariable(getattr(self.obj, name))
|