mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Sharing code between the code that handles test results in parallel vs serial mode. Note that the original version of this code had an inconsistency between the two versions where it would execute `print_to_stderr(err_message)` on every test that ran in parallel, but for serial tests it would only invoke `print_to_stderr(err_message)` if `continue_on_error` was also specified. By sharing code, this PR changes that behavior to be consistent between the two modes. Also adding some comments. <!-- copilot:poem --> ### <samp>🤖 Generated by Copilot at 029342c</samp> > _Sing, O Muse, of the skillful coder who refined_ > _The PyTorch testing script, `run_test.py`, and shined_ > _A light on its obscure logic, with docstrings and comments_ > _And made it run more smoothly, with better error contents_ Pull Request resolved: https://github.com/pytorch/pytorch/pull/99467 Approved by: https://github.com/huydhn, https://github.com/malfet
1422 lines
50 KiB
Python
Executable File
1422 lines
50 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import copy
|
|
import glob
|
|
import json
|
|
import os
|
|
import pathlib
|
|
import shutil
|
|
import signal
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
from datetime import datetime
|
|
from distutils.version import LooseVersion
|
|
from typing import Any, cast, Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.multiprocessing import current_process, get_context
|
|
from torch.testing._internal.common_utils import (
|
|
FILE_SCHEMA,
|
|
IS_CI,
|
|
is_slow_gradcheck_env,
|
|
parser as common_parser,
|
|
retry_shell,
|
|
set_cwd,
|
|
shell,
|
|
TEST_WITH_ROCM,
|
|
)
|
|
from torch.utils import cpp_extension
|
|
|
|
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent
|
|
|
|
try:
|
|
# using tools/ to optimize test run.
|
|
sys.path.append(str(REPO_ROOT))
|
|
from tools.stats.export_test_times import TEST_TIMES_FILE
|
|
from tools.testing.test_selections import (
|
|
calculate_shards,
|
|
get_reordered_tests,
|
|
get_test_case_configs,
|
|
NUM_PROCS,
|
|
ShardedTest,
|
|
THRESHOLD,
|
|
)
|
|
|
|
HAVE_TEST_SELECTION_TOOLS = True
|
|
except ImportError:
|
|
HAVE_TEST_SELECTION_TOOLS = False
|
|
print(
|
|
"Unable to import test_selections from tools/testing. Running without test selection stats..."
|
|
)
|
|
|
|
|
|
RERUN_DISABLED_TESTS = os.getenv("PYTORCH_TEST_RERUN_DISABLED_TESTS", "0") == "1"
|
|
|
|
|
|
# Note [ROCm parallel CI testing]
|
|
# https://github.com/pytorch/pytorch/pull/85770 added file-granularity parallel testing.
|
|
# In .ci/pytorch/test.sh, TEST_CONFIG == "default", CUDA and HIP_VISIBLE_DEVICES is set to 0.
|
|
# This results in multiple test files sharing the same GPU.
|
|
# This should be a supported use case for ROCm, but it exposed issues in the kernel driver resulting in hangs.
|
|
# See https://github.com/pytorch/pytorch/issues/90940.
|
|
#
|
|
# Further, ROCm self-hosted runners have up to 4 GPUs.
|
|
# Device visibility was set to 0 to match CUDA test behavior, but this was wasting available GPU resources.
|
|
# Assigning each Pool worker their own dedicated GPU avoids the ROCm oversubscription issues.
|
|
# This should also result in better overall wall clock time since all GPUs can be utilized.
|
|
def maybe_set_hip_visible_devies():
|
|
# Special handling of ROCm GHA runners for parallel (file granularity) tests.
|
|
if torch.version.hip:
|
|
p = current_process()
|
|
if p.name != "MainProcess":
|
|
# this is a Process from a parallel Pool, not the MainProcess
|
|
os.environ["HIP_VISIBLE_DEVICES"] = str(p._identity[0] % NUM_PROCS)
|
|
|
|
|
|
def strtobool(s):
|
|
if s.lower() in ["", "0", "false", "off"]:
|
|
return False
|
|
return True
|
|
|
|
|
|
def discover_tests(
|
|
base_dir: Optional[pathlib.Path] = None,
|
|
blocklisted_patterns: Optional[List[str]] = None,
|
|
blocklisted_tests: Optional[List[str]] = None,
|
|
extra_tests: Optional[List[str]] = None,
|
|
) -> List[str]:
|
|
"""
|
|
Searches for all python files starting with test_ excluding one specified by patterns
|
|
"""
|
|
|
|
def skip_test_p(name: str) -> bool:
|
|
rc = False
|
|
if blocklisted_patterns is not None:
|
|
rc |= any(name.startswith(pattern) for pattern in blocklisted_patterns)
|
|
if blocklisted_tests is not None:
|
|
rc |= name in blocklisted_tests
|
|
return rc
|
|
|
|
cwd = pathlib.Path(__file__).resolve().parent if base_dir is None else base_dir
|
|
# This supports symlinks, so we can link domain library tests to PyTorch test directory
|
|
all_py_files = [
|
|
pathlib.Path(p) for p in glob.glob(f"{cwd}/**/test_*.py", recursive=True)
|
|
]
|
|
rc = [str(fname.relative_to(cwd))[:-3] for fname in all_py_files]
|
|
# Invert slashes on Windows
|
|
if sys.platform == "win32":
|
|
rc = [name.replace("\\", "/") for name in rc]
|
|
rc = [test for test in rc if not skip_test_p(test)]
|
|
if extra_tests is not None:
|
|
rc += extra_tests
|
|
return sorted(rc)
|
|
|
|
|
|
TESTS = discover_tests(
|
|
blocklisted_patterns=[
|
|
"ao",
|
|
"bottleneck_test",
|
|
"custom_backend",
|
|
"custom_operator",
|
|
"fx", # executed by test_fx.py
|
|
"jit", # executed by test_jit.py
|
|
"mobile",
|
|
"onnx_caffe2",
|
|
"package", # executed by test_package.py
|
|
"quantization", # executed by test_quantization.py
|
|
"autograd", # executed by test_autograd.py
|
|
],
|
|
blocklisted_tests=[
|
|
"test_bundled_images",
|
|
"test_cpp_extensions_aot",
|
|
"test_determination",
|
|
"test_jit_fuser",
|
|
"test_jit_simple",
|
|
"test_jit_string",
|
|
"test_kernel_launch_checks",
|
|
"test_nnapi",
|
|
"test_segment_reductions",
|
|
"test_static_runtime",
|
|
"test_throughput_benchmark",
|
|
"test_typing",
|
|
"distributed/bin/test_script",
|
|
"distributed/elastic/multiprocessing/bin/test_script",
|
|
"distributed/launcher/bin/test_script",
|
|
"distributed/launcher/bin/test_script_init_method",
|
|
"distributed/launcher/bin/test_script_is_torchelastic_launched",
|
|
"distributed/launcher/bin/test_script_local_rank",
|
|
"distributed/test_c10d_spawn",
|
|
"distributions/test_transforms",
|
|
"distributions/test_utils",
|
|
"onnx/test_pytorch_onnx_onnxruntime_cuda",
|
|
"onnx/test_models",
|
|
],
|
|
extra_tests=[
|
|
"test_cpp_extensions_aot_ninja",
|
|
"test_cpp_extensions_aot_no_ninja",
|
|
"distributed/elastic/timer/api_test",
|
|
"distributed/elastic/timer/local_timer_example",
|
|
"distributed/elastic/timer/local_timer_test",
|
|
"distributed/elastic/events/lib_test",
|
|
"distributed/elastic/metrics/api_test",
|
|
"distributed/elastic/utils/logging_test",
|
|
"distributed/elastic/utils/util_test",
|
|
"distributed/elastic/utils/distributed_test",
|
|
"distributed/elastic/multiprocessing/api_test",
|
|
],
|
|
)
|
|
|
|
# The doctests are a special case that don't correspond to a file that discover
|
|
# tests can enable.
|
|
TESTS = TESTS + ["doctests"]
|
|
|
|
FSDP_TEST = [test for test in TESTS if test.startswith("distributed/fsdp")]
|
|
|
|
WINDOWS_BLOCKLIST = [
|
|
"distributed/nn/jit/test_instantiator",
|
|
"distributed/rpc/test_faulty_agent",
|
|
"distributed/rpc/test_tensorpipe_agent",
|
|
"distributed/rpc/test_share_memory",
|
|
"distributed/rpc/cuda/test_tensorpipe_agent",
|
|
"distributed/pipeline/sync/skip/test_api",
|
|
"distributed/pipeline/sync/skip/test_gpipe",
|
|
"distributed/pipeline/sync/skip/test_inspect_skip_layout",
|
|
"distributed/pipeline/sync/skip/test_leak",
|
|
"distributed/pipeline/sync/skip/test_portal",
|
|
"distributed/pipeline/sync/skip/test_stash_pop",
|
|
"distributed/pipeline/sync/skip/test_tracker",
|
|
"distributed/pipeline/sync/skip/test_verify_skippables",
|
|
"distributed/pipeline/sync/test_balance",
|
|
"distributed/pipeline/sync/test_bugs",
|
|
"distributed/pipeline/sync/test_checkpoint",
|
|
"distributed/pipeline/sync/test_copy",
|
|
"distributed/pipeline/sync/test_deferred_batch_norm",
|
|
"distributed/pipeline/sync/test_dependency",
|
|
"distributed/pipeline/sync/test_inplace",
|
|
"distributed/pipeline/sync/test_microbatch",
|
|
"distributed/pipeline/sync/test_phony",
|
|
"distributed/pipeline/sync/test_pipe",
|
|
"distributed/pipeline/sync/test_pipeline",
|
|
"distributed/pipeline/sync/test_stream",
|
|
"distributed/pipeline/sync/test_transparency",
|
|
"distributed/pipeline/sync/test_worker",
|
|
"distributed/elastic/agent/server/test/api_test",
|
|
"distributed/elastic/multiprocessing/api_test",
|
|
"distributed/_shard/checkpoint/test_checkpoint"
|
|
"distributed/_shard/checkpoint/test_file_system_checkpoint"
|
|
"distributed/_shard/sharding_spec/test_sharding_spec",
|
|
"distributed/_shard/sharding_plan/test_sharding_plan",
|
|
"distributed/_shard/sharded_tensor/test_sharded_tensor",
|
|
"distributed/_shard/sharded_tensor/test_sharded_tensor_reshard",
|
|
"distributed/_shard/sharded_tensor/ops/test_embedding",
|
|
"distributed/_shard/sharded_tensor/ops/test_embedding_bag",
|
|
"distributed/_shard/sharded_tensor/ops/test_binary_cmp",
|
|
"distributed/_shard/sharded_tensor/ops/test_init",
|
|
"distributed/_shard/sharded_optim/test_sharded_optim",
|
|
] + FSDP_TEST
|
|
|
|
ROCM_BLOCKLIST = [
|
|
"distributed/rpc/test_faulty_agent",
|
|
"distributed/rpc/test_tensorpipe_agent",
|
|
"distributed/rpc/test_share_memory",
|
|
"distributed/rpc/cuda/test_tensorpipe_agent",
|
|
"distributed/_shard/checkpoint/test_checkpoint"
|
|
"distributed/_shard/checkpoint/test_file_system_checkpoint"
|
|
"distributed/_shard/sharding_spec/test_sharding_spec",
|
|
"distributed/_shard/sharding_plan/test_sharding_plan",
|
|
"distributed/_shard/sharded_tensor/test_sharded_tensor",
|
|
"distributed/_shard/sharded_tensor/test_sharded_tensor_reshard",
|
|
"distributed/_shard/sharded_tensor/ops/test_embedding",
|
|
"distributed/_shard/sharded_tensor/ops/test_embedding_bag",
|
|
"distributed/_shard/sharded_tensor/ops/test_binary_cmp",
|
|
"distributed/_shard/sharded_tensor/ops/test_init",
|
|
"distributed/_shard/sharded_optim/test_sharded_optim",
|
|
"test_determination",
|
|
"test_jit_legacy",
|
|
"test_cuda_nvml_based_avail",
|
|
]
|
|
|
|
# The tests inside these files should never be run in parallel with each other
|
|
RUN_PARALLEL_BLOCKLIST = [
|
|
"test_cpp_extensions_jit",
|
|
"test_cpp_extensions_open_device_registration",
|
|
"test_jit_disabled",
|
|
"test_mobile_optimizer",
|
|
"test_multiprocessing",
|
|
"test_multiprocessing_spawn",
|
|
"test_namedtuple_return_api",
|
|
"test_overrides",
|
|
"test_show_pickle",
|
|
"test_tensorexpr",
|
|
"test_cuda_primary_ctx",
|
|
"test_cuda_trace",
|
|
"test_cuda_nvml_based_avail",
|
|
] + FSDP_TEST
|
|
|
|
# Test files that should always be run serially with other test files,
|
|
# but it's okay if the tests inside them are run in parallel with each other.
|
|
CI_SERIAL_LIST = [
|
|
"test_nn",
|
|
"test_fake_tensor",
|
|
"test_cpp_api_parity",
|
|
"test_reductions",
|
|
"test_cuda",
|
|
"test_cuda_expandable_segments",
|
|
"test_jit_cuda_fuser", # OOM on test_issue_1785, also profiling?
|
|
"test_indexing",
|
|
"test_fx_backends",
|
|
"test_linalg",
|
|
"test_cpp_extensions_jit",
|
|
"test_torch",
|
|
"test_tensor_creation_ops",
|
|
"test_sparse_csr",
|
|
"test_dispatch",
|
|
"test_python_dispatch", # torch.library creation and deletion must be serialized
|
|
"test_spectral_ops", # Cause CUDA illegal memory access https://github.com/pytorch/pytorch/issues/88916
|
|
"nn/test_pooling",
|
|
"nn/test_convolution", # Doesn't respect set_per_process_memory_fraction, results in OOM for other tests in slow gradcheck
|
|
"distributions/test_distributions",
|
|
"test_autograd", # slow gradcheck runs a test that checks the cuda memory allocator
|
|
"test_prims", # slow gradcheck runs a test that checks the cuda memory allocator
|
|
"test_modules", # failed test due to mismatched elements
|
|
"functorch/test_vmap", # OOM
|
|
"test_fx", # gets SIGKILL
|
|
"test_dataloader", # frequently hangs for ROCm
|
|
"test_serialization", # test_serialization_2gb_file allocates a tensor of 2GB, and could cause OOM
|
|
"_nvfuser/test_torchscript", # OOM on test_issue_1785
|
|
"test_schema_check", # Cause CUDA illegal memory access https://github.com/pytorch/pytorch/issues/95749
|
|
"functorch/test_memory_efficient_fusion", # Cause CUDA OOM on ROCm
|
|
"test_utils", # OOM
|
|
"test_sort_and_select", # OOM
|
|
"test_backward_compatible_arguments", # OOM
|
|
"test_module_init", # OOM
|
|
"test_autocast", # OOM
|
|
"test_native_mha", # OOM
|
|
"test_module_hooks", # OOM
|
|
]
|
|
# A subset of onnx tests that cannot run in parallel due to high memory usage.
|
|
ONNX_SERIAL_LIST = [
|
|
"onnx/test_models",
|
|
"onnx/test_models_quantized_onnxruntime",
|
|
"onnx/test_models_onnxruntime",
|
|
"onnx/test_custom_ops",
|
|
"onnx/test_utility_funs",
|
|
]
|
|
|
|
# A subset of our TEST list that validates PyTorch's ops, modules, and autograd function as expected
|
|
CORE_TEST_LIST = [
|
|
"test_autograd",
|
|
"test_modules",
|
|
"test_nn",
|
|
"test_ops",
|
|
"test_ops_gradients",
|
|
"test_ops_fwd_gradients",
|
|
"test_ops_jit",
|
|
"test_torch",
|
|
]
|
|
|
|
|
|
# if a test file takes longer than 5 min, we add it to TARGET_DET_LIST
|
|
SLOW_TEST_THRESHOLD = 300
|
|
|
|
DISTRIBUTED_TESTS_CONFIG = {}
|
|
|
|
|
|
if dist.is_available():
|
|
DISTRIBUTED_TESTS_CONFIG["test"] = {"WORLD_SIZE": "1"}
|
|
if not TEST_WITH_ROCM and dist.is_mpi_available():
|
|
DISTRIBUTED_TESTS_CONFIG["mpi"] = {
|
|
"WORLD_SIZE": "3",
|
|
"TEST_REPORT_SOURCE_OVERRIDE": "dist-mpi",
|
|
}
|
|
if dist.is_nccl_available():
|
|
DISTRIBUTED_TESTS_CONFIG["nccl"] = {
|
|
"WORLD_SIZE": "2" if torch.cuda.device_count() == 2 else "3",
|
|
"TEST_REPORT_SOURCE_OVERRIDE": "dist-nccl",
|
|
}
|
|
if dist.is_gloo_available():
|
|
DISTRIBUTED_TESTS_CONFIG["gloo"] = {
|
|
"WORLD_SIZE": "2" if torch.cuda.device_count() == 2 else "3",
|
|
"TEST_REPORT_SOURCE_OVERRIDE": "dist-gloo",
|
|
}
|
|
if dist.is_ucc_available():
|
|
DISTRIBUTED_TESTS_CONFIG["ucc"] = {
|
|
"WORLD_SIZE": "2" if torch.cuda.device_count() == 2 else "3",
|
|
"TEST_REPORT_SOURCE_OVERRIDE": "dist-ucc",
|
|
"UCX_TLS": "tcp",
|
|
"UCC_TLS": "nccl,ucp",
|
|
"UCC_TL_UCP_TUNE": "cuda:0", # don't use UCP TL on CUDA as it is not well supported
|
|
}
|
|
|
|
# https://stackoverflow.com/questions/2549939/get-signal-names-from-numbers-in-python
|
|
SIGNALS_TO_NAMES_DICT = {
|
|
getattr(signal, n): n for n in dir(signal) if n.startswith("SIG") and "_" not in n
|
|
}
|
|
|
|
CPP_EXTENSIONS_ERROR = """
|
|
Ninja (https://ninja-build.org) is required for some of the C++ extensions
|
|
tests, but it could not be found. Install ninja with `pip install ninja`
|
|
or `conda install ninja`. Alternatively, disable said tests with
|
|
`run_test.py --exclude test_cpp_extensions_aot_ninja test_cpp_extensions_jit`.
|
|
"""
|
|
|
|
PYTORCH_COLLECT_COVERAGE = bool(os.environ.get("PYTORCH_COLLECT_COVERAGE"))
|
|
|
|
JIT_EXECUTOR_TESTS = [
|
|
"test_jit_profiling",
|
|
"test_jit_legacy",
|
|
"test_jit_fuser_legacy",
|
|
]
|
|
|
|
DISTRIBUTED_TESTS = [test for test in TESTS if test.startswith("distributed")]
|
|
FUNCTORCH_TESTS = [test for test in TESTS if test.startswith("functorch")]
|
|
ONNX_TESTS = [test for test in TESTS if test.startswith("onnx")]
|
|
|
|
TESTS_REQUIRING_LAPACK = [
|
|
"distributions/test_constraints",
|
|
"distributions/test_distributions",
|
|
]
|
|
|
|
# These are just the slowest ones, this isn't an exhaustive list.
|
|
TESTS_NOT_USING_GRADCHECK = [
|
|
# Note that you should use skipIfSlowGradcheckEnv if you do not wish to
|
|
# skip all the tests in that file, e.g. test_mps
|
|
"doctests",
|
|
"test_meta",
|
|
"test_hub",
|
|
"test_fx",
|
|
"test_decomp",
|
|
"test_cpp_extensions_jit",
|
|
"test_jit",
|
|
"test_ops",
|
|
"test_ops_jit",
|
|
"dynamo/test_recompile_ux",
|
|
"inductor/test_smoke",
|
|
"test_quantization",
|
|
]
|
|
|
|
|
|
def print_to_stderr(message):
|
|
print(message, file=sys.stderr)
|
|
|
|
|
|
def get_executable_command(options, disable_coverage=False):
|
|
if options.coverage and not disable_coverage:
|
|
executable = ["coverage", "run", "--parallel-mode", "--source=torch"]
|
|
else:
|
|
executable = [sys.executable, "-bb"]
|
|
return executable
|
|
|
|
|
|
def run_test(
|
|
test_module,
|
|
test_directory,
|
|
options,
|
|
launcher_cmd=None,
|
|
extra_unittest_args=None,
|
|
env=None,
|
|
) -> int:
|
|
maybe_set_hip_visible_devies()
|
|
unittest_args = options.additional_unittest_args.copy()
|
|
test_file = test_module
|
|
if isinstance(test_file, ShardedTest):
|
|
unittest_args.extend(
|
|
[
|
|
f"--shard-id={test_module.shard - 1}",
|
|
f"--num-shards={test_module.num_shards}",
|
|
]
|
|
)
|
|
test_file = test_module.name
|
|
|
|
if options.verbose:
|
|
unittest_args.append(f'-{"v"*options.verbose}') # in case of pytest
|
|
if test_file in RUN_PARALLEL_BLOCKLIST:
|
|
unittest_args = [
|
|
arg for arg in unittest_args if not arg.startswith("--run-parallel")
|
|
]
|
|
if extra_unittest_args:
|
|
assert isinstance(extra_unittest_args, list)
|
|
unittest_args.extend(extra_unittest_args)
|
|
|
|
# If using pytest, replace -f with equivalent -x
|
|
if options.pytest:
|
|
unittest_args.extend(get_pytest_args(options))
|
|
unittest_args = [arg if arg != "-f" else "-x" for arg in unittest_args]
|
|
if IS_CI:
|
|
ci_args = ["--import-slow-tests", "--import-disabled-tests"]
|
|
if RERUN_DISABLED_TESTS:
|
|
ci_args.append("--rerun-disabled-tests")
|
|
# use the downloaded test cases configuration, not supported in pytest
|
|
unittest_args.extend(ci_args)
|
|
if test_file in PYTEST_SKIP_RETRIES:
|
|
if not options.pytest:
|
|
raise RuntimeError(
|
|
"A test running without pytest cannot skip retries using "
|
|
"the PYTEST_SKIP_RETRIES set."
|
|
)
|
|
unittest_args = [arg for arg in unittest_args if "--reruns" not in arg]
|
|
|
|
# Extra arguments are not supported with pytest
|
|
executable = get_executable_command(options)
|
|
|
|
# Can't call `python -m unittest test_*` here because it doesn't run code
|
|
# in `if __name__ == '__main__': `. So call `python test_*.py` instead.
|
|
argv = [test_file + ".py"] + unittest_args
|
|
|
|
os.makedirs(REPO_ROOT / "test" / "test-reports", exist_ok=True)
|
|
log_fd, log_path = tempfile.mkstemp(
|
|
dir=REPO_ROOT / "test" / "test-reports",
|
|
prefix="{}_".format(test_file.replace("\\", "-").replace("/", "-")),
|
|
suffix=".log",
|
|
)
|
|
os.close(log_fd)
|
|
command = (launcher_cmd or []) + executable + argv
|
|
should_file_rerun = (
|
|
"--subprocess" not in command
|
|
and not RERUN_DISABLED_TESTS
|
|
and isinstance(test_module, ShardedTest)
|
|
and test_module.time is not None
|
|
)
|
|
timeout = THRESHOLD * 3 if should_file_rerun else None
|
|
print_to_stderr("Executing {} ... [{}]".format(command, datetime.now()))
|
|
with open(log_path, "w") as f:
|
|
ret_code = retry_shell(
|
|
command,
|
|
test_directory,
|
|
stdout=f,
|
|
stderr=f,
|
|
env=env,
|
|
timeout=timeout,
|
|
retries=1 if should_file_rerun else 0,
|
|
)
|
|
|
|
print_log_file(test_module, log_path, failed=(ret_code != 0))
|
|
os.remove(log_path)
|
|
return ret_code
|
|
|
|
|
|
def run_test_with_subprocess(test_module, test_directory, options):
|
|
return run_test(
|
|
test_module, test_directory, options, extra_unittest_args=["--subprocess"]
|
|
)
|
|
|
|
|
|
def _test_cpp_extensions_aot(test_directory, options, use_ninja):
|
|
if use_ninja:
|
|
try:
|
|
cpp_extension.verify_ninja_availability()
|
|
except RuntimeError:
|
|
print(CPP_EXTENSIONS_ERROR)
|
|
return 1
|
|
|
|
# Wipe the build folder, if it exists already
|
|
cpp_extensions_test_dir = os.path.join(test_directory, "cpp_extensions")
|
|
cpp_extensions_test_build_dir = os.path.join(cpp_extensions_test_dir, "build")
|
|
if os.path.exists(cpp_extensions_test_build_dir):
|
|
shutil.rmtree(cpp_extensions_test_build_dir)
|
|
|
|
# Build the test cpp extensions modules
|
|
shell_env = os.environ.copy()
|
|
shell_env["USE_NINJA"] = str(1 if use_ninja else 0)
|
|
cmd = [sys.executable, "setup.py", "install", "--root", "./install"]
|
|
return_code = shell(cmd, cwd=cpp_extensions_test_dir, env=shell_env)
|
|
if return_code != 0:
|
|
return return_code
|
|
if sys.platform != "win32":
|
|
return_code = shell(
|
|
cmd,
|
|
cwd=os.path.join(cpp_extensions_test_dir, "no_python_abi_suffix_test"),
|
|
env=shell_env,
|
|
)
|
|
if return_code != 0:
|
|
return return_code
|
|
|
|
# "install" the test modules and run tests
|
|
python_path = os.environ.get("PYTHONPATH", "")
|
|
from shutil import copyfile
|
|
|
|
os.environ["USE_NINJA"] = shell_env["USE_NINJA"]
|
|
test_module = "test_cpp_extensions_aot" + ("_ninja" if use_ninja else "_no_ninja")
|
|
copyfile(
|
|
test_directory + "/test_cpp_extensions_aot.py",
|
|
test_directory + "/" + test_module + ".py",
|
|
)
|
|
try:
|
|
cpp_extensions = os.path.join(test_directory, "cpp_extensions")
|
|
install_directory = ""
|
|
# install directory is the one that is named site-packages
|
|
for root, directories, _ in os.walk(os.path.join(cpp_extensions, "install")):
|
|
for directory in directories:
|
|
if "-packages" in directory:
|
|
install_directory = os.path.join(root, directory)
|
|
|
|
assert install_directory, "install_directory must not be empty"
|
|
os.environ["PYTHONPATH"] = os.pathsep.join([install_directory, python_path])
|
|
return run_test(test_module, test_directory, options)
|
|
finally:
|
|
os.environ["PYTHONPATH"] = python_path
|
|
if os.path.exists(test_directory + "/" + test_module + ".py"):
|
|
os.remove(test_directory + "/" + test_module + ".py")
|
|
os.environ.pop("USE_NINJA")
|
|
|
|
|
|
def test_cpp_extensions_aot_ninja(test_module, test_directory, options):
|
|
return _test_cpp_extensions_aot(test_directory, options, use_ninja=True)
|
|
|
|
|
|
def test_cpp_extensions_aot_no_ninja(test_module, test_directory, options):
|
|
return _test_cpp_extensions_aot(test_directory, options, use_ninja=False)
|
|
|
|
|
|
def test_distributed(test_module, test_directory, options):
|
|
# MPI tests are broken with Python-3.9
|
|
mpi_available = subprocess.call(
|
|
"command -v mpiexec", shell=True
|
|
) == 0 and sys.version_info < (3, 9)
|
|
if options.verbose and not mpi_available:
|
|
print_to_stderr("MPI not available -- MPI backend tests will be skipped")
|
|
|
|
config = DISTRIBUTED_TESTS_CONFIG
|
|
for backend, env_vars in config.items():
|
|
if sys.platform == "win32" and backend != "gloo":
|
|
continue
|
|
if backend == "mpi" and not mpi_available:
|
|
continue
|
|
for with_init_file in {True, False}:
|
|
if sys.platform == "win32" and not with_init_file:
|
|
continue
|
|
tmp_dir = tempfile.mkdtemp()
|
|
if options.verbose:
|
|
init_str = "with {} init_method"
|
|
with_init = init_str.format("file" if with_init_file else "env")
|
|
print_to_stderr(
|
|
"Running distributed tests for the {} backend {}".format(
|
|
backend, with_init
|
|
)
|
|
)
|
|
old_environ = dict(os.environ)
|
|
os.environ["TEMP_DIR"] = tmp_dir
|
|
os.environ["BACKEND"] = backend
|
|
os.environ["INIT_METHOD"] = "env://"
|
|
os.environ.update(env_vars)
|
|
if with_init_file:
|
|
if test_module.name == "test_distributed_spawn":
|
|
init_method = f"{FILE_SCHEMA}{tmp_dir}/"
|
|
else:
|
|
init_method = f"{FILE_SCHEMA}{tmp_dir}/shared_init_file"
|
|
os.environ["INIT_METHOD"] = init_method
|
|
try:
|
|
os.mkdir(os.path.join(tmp_dir, "barrier"))
|
|
os.mkdir(os.path.join(tmp_dir, "test_dir"))
|
|
if backend == "mpi":
|
|
# test mpiexec for --noprefix option
|
|
with open(os.devnull, "w") as devnull:
|
|
allowrunasroot_opt = (
|
|
"--allow-run-as-root"
|
|
if subprocess.call(
|
|
'mpiexec --allow-run-as-root -n 1 bash -c ""',
|
|
shell=True,
|
|
stdout=devnull,
|
|
stderr=subprocess.STDOUT,
|
|
)
|
|
== 0
|
|
else ""
|
|
)
|
|
noprefix_opt = (
|
|
"--noprefix"
|
|
if subprocess.call(
|
|
f'mpiexec {allowrunasroot_opt} -n 1 --noprefix bash -c ""',
|
|
shell=True,
|
|
stdout=devnull,
|
|
stderr=subprocess.STDOUT,
|
|
)
|
|
== 0
|
|
else ""
|
|
)
|
|
|
|
mpiexec = ["mpiexec", "-n", "3", noprefix_opt, allowrunasroot_opt]
|
|
|
|
return_code = run_test(
|
|
test_module, test_directory, options, launcher_cmd=mpiexec
|
|
)
|
|
else:
|
|
return_code = run_test(
|
|
test_module,
|
|
test_directory,
|
|
options,
|
|
extra_unittest_args=["--subprocess"],
|
|
)
|
|
if return_code != 0:
|
|
return return_code
|
|
finally:
|
|
shutil.rmtree(tmp_dir)
|
|
os.environ.clear()
|
|
os.environ.update(old_environ)
|
|
return 0
|
|
|
|
|
|
def run_doctests(test_module, test_directory, options):
|
|
"""
|
|
Assumes the incoming test module is called doctest, and simply executes the
|
|
xdoctest runner on the torch library itself.
|
|
"""
|
|
import pathlib
|
|
|
|
import xdoctest
|
|
|
|
pkgpath = pathlib.Path(torch.__file__).parent
|
|
|
|
exclude_module_list = []
|
|
enabled = {
|
|
# TODO: expose these options to the user
|
|
# For now disable all feature-conditional tests
|
|
# 'lapack': 'auto',
|
|
# 'cuda': 'auto',
|
|
# 'cuda1': 'auto',
|
|
# 'qengine': 'auto',
|
|
"lapack": 0,
|
|
"cuda": 0,
|
|
"cuda1": 0,
|
|
"qengine": 0,
|
|
"autograd_profiler": 0,
|
|
"cpp_ext": 0,
|
|
"monitor": 0,
|
|
"onnx": "auto",
|
|
}
|
|
|
|
# Resolve "auto" based on a test to determine if the feature is available.
|
|
if enabled["cuda"] == "auto" and torch.cuda.is_available():
|
|
enabled["cuda"] = True
|
|
|
|
if (
|
|
enabled["cuda1"] == "auto"
|
|
and torch.cuda.is_available()
|
|
and torch.cuda.device_count() > 1
|
|
):
|
|
enabled["cuda1"] = True
|
|
|
|
if enabled["lapack"] == "auto" and torch._C.has_lapack:
|
|
enabled["lapack"] = True
|
|
|
|
if enabled["qengine"] == "auto":
|
|
try:
|
|
# Is there a better check if quantization is enabled?
|
|
import torch.ao.nn.quantized as nnq # NOQA
|
|
|
|
torch.backends.quantized.engine = "qnnpack"
|
|
torch.backends.quantized.engine = "fbgemm"
|
|
except (ImportError, RuntimeError):
|
|
...
|
|
else:
|
|
enabled["qengine"] = True
|
|
|
|
if enabled["onnx"] == "auto":
|
|
try:
|
|
import onnx # NOQA
|
|
import onnxruntime # NOQA
|
|
import onnxscript # NOQA
|
|
except ImportError:
|
|
exclude_module_list.append("torch.onnx.*")
|
|
enabled["onnx"] = False
|
|
else:
|
|
enabled["onnx"] = True
|
|
|
|
# Set doctest environment variables
|
|
if enabled["cuda"]:
|
|
os.environ["TORCH_DOCTEST_CUDA"] = "1"
|
|
|
|
if enabled["cuda1"]:
|
|
os.environ["TORCH_DOCTEST_CUDA1"] = "1"
|
|
|
|
if enabled["lapack"]:
|
|
os.environ["TORCH_DOCTEST_LAPACK"] = "1"
|
|
|
|
if enabled["qengine"]:
|
|
os.environ["TORCH_DOCTEST_QENGINE"] = "1"
|
|
|
|
if enabled["autograd_profiler"]:
|
|
os.environ["TORCH_DOCTEST_AUTOGRAD_PROFILER"] = "1"
|
|
|
|
if enabled["cpp_ext"]:
|
|
os.environ["TORCH_DOCTEST_CPP_EXT"] = "1"
|
|
|
|
if enabled["monitor"]:
|
|
os.environ["TORCH_DOCTEST_MONITOR"] = "1"
|
|
|
|
if enabled["onnx"]:
|
|
os.environ["TORCH_DOCTEST_ONNX"] = "1"
|
|
|
|
if 0:
|
|
# TODO: could try to enable some of these
|
|
os.environ["TORCH_DOCTEST_QUANTIZED_DYNAMIC"] = "1"
|
|
os.environ["TORCH_DOCTEST_ANOMALY"] = "1"
|
|
os.environ["TORCH_DOCTEST_AUTOGRAD"] = "1"
|
|
os.environ["TORCH_DOCTEST_HUB"] = "1"
|
|
os.environ["TORCH_DOCTEST_DATALOADER"] = "1"
|
|
os.environ["TORCH_DOCTEST_FUTURES"] = "1"
|
|
|
|
pkgpath = os.path.dirname(torch.__file__)
|
|
|
|
xdoctest_config = {
|
|
"global_exec": r"\n".join(
|
|
[
|
|
"from torch import nn",
|
|
"import torch.nn.functional as F",
|
|
"import torch",
|
|
]
|
|
),
|
|
"analysis": "static", # set to "auto" to test doctests in compiled modules
|
|
"style": "google",
|
|
"options": "+IGNORE_WHITESPACE",
|
|
}
|
|
xdoctest_verbose = max(1, options.verbose)
|
|
run_summary = xdoctest.runner.doctest_module(
|
|
os.fspath(pkgpath),
|
|
config=xdoctest_config,
|
|
verbose=xdoctest_verbose,
|
|
command=options.xdoctest_command,
|
|
argv=[],
|
|
exclude=exclude_module_list,
|
|
)
|
|
result = 1 if run_summary.get("n_failed", 0) else 0
|
|
return result
|
|
|
|
|
|
def print_log_file(test: str, file_path: str, failed: bool) -> None:
|
|
num_lines = sum(1 for _ in open(file_path, "rb"))
|
|
test = str(test)
|
|
n = 100
|
|
with open(file_path, "r") as f:
|
|
print_to_stderr("")
|
|
if failed:
|
|
if n < num_lines:
|
|
print_to_stderr(
|
|
f"Expand the folded group to see the beginning of the log file of {test}"
|
|
)
|
|
print_to_stderr(
|
|
f"##[group]PRINTING BEGINNING OF LOG FILE of {test} ({file_path})"
|
|
)
|
|
for _ in range(num_lines - n):
|
|
print_to_stderr(next(f).rstrip())
|
|
print_to_stderr("##[endgroup]")
|
|
for _ in range(min(n, num_lines)):
|
|
print_to_stderr(next(f).rstrip())
|
|
print_to_stderr(f"FINISHED PRINTING LOG FILE of {test} ({file_path})")
|
|
else:
|
|
print_to_stderr(f"Expand the folded group to see the log file of {test}")
|
|
print_to_stderr(f"##[group]PRINTING LOG FILE of {test} ({file_path})")
|
|
print_to_stderr(f.read())
|
|
print_to_stderr("##[endgroup]")
|
|
print_to_stderr(f"FINISHED PRINTING LOG FILE of {test} ({file_path})")
|
|
print_to_stderr("")
|
|
|
|
|
|
def get_pytest_args(options):
|
|
if RERUN_DISABLED_TESTS:
|
|
# When under rerun-disabled-tests mode, run the same tests multiple times to determine their
|
|
# flakiness status. Default to 50 re-runs
|
|
rerun_options = ["--flake-finder", "--flake-runs=50"]
|
|
elif options.continue_through_error:
|
|
# If continue through error, don't stop on first failure
|
|
rerun_options = ["--reruns=2"]
|
|
else:
|
|
# When under the normal mode, retry a failed test 2 more times. -x means stop at the first
|
|
# failure
|
|
rerun_options = ["-x", "--reruns=2", "--sw"]
|
|
|
|
pytest_args = [
|
|
"--use-pytest",
|
|
"-vv",
|
|
"-rfEX",
|
|
"-p",
|
|
"no:xdist",
|
|
]
|
|
pytest_args.extend(rerun_options)
|
|
return pytest_args
|
|
|
|
|
|
CUSTOM_HANDLERS = {
|
|
"test_cuda_primary_ctx": run_test_with_subprocess,
|
|
"test_cuda_nvml_based_avail": run_test_with_subprocess,
|
|
"test_cuda_trace": run_test_with_subprocess,
|
|
"test_cpp_extensions_aot_no_ninja": test_cpp_extensions_aot_no_ninja,
|
|
"test_cpp_extensions_aot_ninja": test_cpp_extensions_aot_ninja,
|
|
"distributed/test_distributed_spawn": test_distributed,
|
|
"distributed/algorithms/quantization/test_quantization": test_distributed,
|
|
"distributed/test_c10d_nccl": run_test_with_subprocess,
|
|
"distributed/test_c10d_gloo": run_test_with_subprocess,
|
|
"distributed/test_c10d_ucc": run_test_with_subprocess,
|
|
"distributed/test_c10d_common": run_test_with_subprocess,
|
|
"distributed/test_c10d_spawn_gloo": run_test_with_subprocess,
|
|
"distributed/test_c10d_spawn_nccl": run_test_with_subprocess,
|
|
"distributed/test_c10d_spawn_ucc": run_test_with_subprocess,
|
|
"distributed/test_store": run_test_with_subprocess,
|
|
"distributed/test_pg_wrapper": run_test_with_subprocess,
|
|
"distributed/rpc/test_faulty_agent": run_test_with_subprocess,
|
|
"distributed/rpc/test_tensorpipe_agent": run_test_with_subprocess,
|
|
"distributed/rpc/test_share_memory": run_test_with_subprocess,
|
|
"distributed/rpc/cuda/test_tensorpipe_agent": run_test_with_subprocess,
|
|
"doctests": run_doctests,
|
|
}
|
|
|
|
|
|
PYTEST_SKIP_RETRIES = {"test_public_bindings"}
|
|
|
|
|
|
def parse_test_module(test):
|
|
return test.split(".")[0]
|
|
|
|
|
|
class TestChoices(list):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(args[0])
|
|
|
|
def __contains__(self, item):
|
|
return list.__contains__(self, parse_test_module(item))
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Run the PyTorch unit test suite",
|
|
epilog="where TESTS is any of: {}".format(", ".join(TESTS)),
|
|
formatter_class=argparse.RawTextHelpFormatter,
|
|
parents=[common_parser],
|
|
)
|
|
parser.add_argument(
|
|
"-v",
|
|
"--verbose",
|
|
action="count",
|
|
default=0,
|
|
help="print verbose information and test-by-test results",
|
|
)
|
|
parser.add_argument("--jit", "--jit", action="store_true", help="run all jit tests")
|
|
parser.add_argument(
|
|
"--distributed-tests",
|
|
"--distributed-tests",
|
|
action="store_true",
|
|
help="run all distributed tests",
|
|
)
|
|
parser.add_argument(
|
|
"--functorch",
|
|
"--functorch",
|
|
action="store_true",
|
|
help=(
|
|
"If this flag is present, we will only run functorch tests. "
|
|
"If this flag is not present, we will run all tests "
|
|
"(including functorch tests)."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mps",
|
|
"--mps",
|
|
action="store_true",
|
|
help=("If this flag is present, we will only run test_mps and test_metal"),
|
|
)
|
|
parser.add_argument(
|
|
"-core",
|
|
"--core",
|
|
action="store_true",
|
|
help="Only run core tests, or tests that validate PyTorch's ops, modules,"
|
|
"and autograd. They are defined by CORE_TEST_LIST.",
|
|
)
|
|
parser.add_argument(
|
|
"--onnx",
|
|
"--onnx",
|
|
action="store_true",
|
|
help=(
|
|
"Only run ONNX tests, or tests that validate PyTorch's ONNX export. "
|
|
"If this flag is not present, we will exclude ONNX tests."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"-pt",
|
|
"--pytest",
|
|
action="store_true",
|
|
help="If true, use `pytest` to execute the tests. E.g., this runs "
|
|
"TestTorch with pytest in verbose and coverage mode: "
|
|
"python run_test.py -vci torch -pt",
|
|
)
|
|
parser.add_argument(
|
|
"-c",
|
|
"--coverage",
|
|
action="store_true",
|
|
help="enable coverage",
|
|
default=PYTORCH_COLLECT_COVERAGE,
|
|
)
|
|
parser.add_argument(
|
|
"-i",
|
|
"--include",
|
|
nargs="+",
|
|
choices=TestChoices(TESTS),
|
|
default=TESTS,
|
|
metavar="TESTS",
|
|
help="select a set of tests to include (defaults to ALL tests)."
|
|
" tests must be a part of the TESTS list defined in run_test.py",
|
|
)
|
|
parser.add_argument(
|
|
"-x",
|
|
"--exclude",
|
|
nargs="+",
|
|
choices=TESTS,
|
|
metavar="TESTS",
|
|
default=[],
|
|
help="select a set of tests to exclude",
|
|
)
|
|
parser.add_argument(
|
|
"-f",
|
|
"--first",
|
|
choices=TESTS,
|
|
metavar="TESTS",
|
|
help="select the test to start from (excludes previous tests)",
|
|
)
|
|
parser.add_argument(
|
|
"-l",
|
|
"--last",
|
|
choices=TESTS,
|
|
metavar="TESTS",
|
|
help="select the last test to run (excludes following tests)",
|
|
)
|
|
parser.add_argument(
|
|
"--bring-to-front",
|
|
nargs="+",
|
|
choices=TestChoices(TESTS),
|
|
default=[],
|
|
metavar="TESTS",
|
|
help="select a set of tests to run first. This can be used in situations"
|
|
" where you want to run all tests, but care more about some set, "
|
|
"e.g. after making a change to a specific component",
|
|
)
|
|
parser.add_argument(
|
|
"--ignore-win-blocklist",
|
|
action="store_true",
|
|
help="always run blocklisted windows tests",
|
|
)
|
|
# NS: Disable target determination until it can be made more reliable
|
|
# parser.add_argument(
|
|
# "--determine-from",
|
|
# help="File of affected source filenames to determine which tests to run.",
|
|
# )
|
|
parser.add_argument(
|
|
"--continue-through-error",
|
|
"--keep-going",
|
|
action="store_true",
|
|
help="Runs the full test suite despite one of the tests failing",
|
|
default=strtobool(os.environ.get("CONTINUE_THROUGH_ERROR", "False")),
|
|
)
|
|
parser.add_argument(
|
|
"additional_unittest_args",
|
|
nargs="*",
|
|
help="additional arguments passed through to unittest, e.g., "
|
|
"python run_test.py -i sparse -- TestSparse.test_factory_size_check",
|
|
)
|
|
parser.add_argument(
|
|
"--shard",
|
|
nargs=2,
|
|
type=int,
|
|
help="runs a shard of the tests (taking into account other selections), e.g., "
|
|
"--shard 2 3 will break up the selected tests into 3 shards and run the tests "
|
|
"in the 2nd shard (the first number should not exceed the second)",
|
|
)
|
|
parser.add_argument(
|
|
"--exclude-jit-executor",
|
|
action="store_true",
|
|
help="exclude tests that are run for a specific jit config",
|
|
)
|
|
parser.add_argument(
|
|
"--exclude-distributed-tests",
|
|
action="store_true",
|
|
help="exclude distributed tests",
|
|
)
|
|
parser.add_argument(
|
|
"--dry-run",
|
|
action="store_true",
|
|
help="Only list the test that will run.",
|
|
)
|
|
parser.add_argument(
|
|
"--xdoctest-command",
|
|
default="all",
|
|
help=(
|
|
"Control the specific doctest action. "
|
|
"Use 'list' to simply parse doctests and check syntax. "
|
|
"Use 'all' to execute all doctests or specify a specific "
|
|
"doctest to run"
|
|
),
|
|
)
|
|
|
|
group = parser.add_mutually_exclusive_group()
|
|
group.add_argument(
|
|
"--dynamo",
|
|
action="store_true",
|
|
help="Run tests with TorchDynamo+EagerBackend turned on",
|
|
)
|
|
group.add_argument(
|
|
"--inductor",
|
|
action="store_true",
|
|
help="Run tests with TorchInductor turned on",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def find_test_index(test, selected_tests, find_last_index=False):
|
|
"""Find the index of the first or last occurrence of a given test/test module in the list of selected tests.
|
|
|
|
This function is used to determine the indices when slicing the list of selected tests when
|
|
``options.first``(:attr:`find_last_index`=False) and/or ``options.last``(:attr:`find_last_index`=True) are used.
|
|
|
|
:attr:`selected_tests` can be a list that contains multiple consequent occurrences of tests
|
|
as part of the same test module, e.g.:
|
|
|
|
```
|
|
selected_tests = ['autograd', 'cuda', **'torch.TestTorch.test_acos',
|
|
'torch.TestTorch.test_tan', 'torch.TestTorch.test_add'**, 'utils']
|
|
```
|
|
|
|
If :attr:`test`='torch' and :attr:`find_last_index`=False, result should be **2**.
|
|
If :attr:`test`='torch' and :attr:`find_last_index`=True, result should be **4**.
|
|
|
|
Args:
|
|
test (str): Name of test to lookup
|
|
selected_tests (list): List of tests
|
|
find_last_index (bool, optional): should we lookup the index of first or last
|
|
occurrence (first is default)
|
|
|
|
Returns:
|
|
index of the first or last occurrence of the given test
|
|
"""
|
|
idx = 0
|
|
found_idx = -1
|
|
for t in selected_tests:
|
|
if t.startswith(test):
|
|
found_idx = idx
|
|
if not find_last_index:
|
|
break
|
|
idx += 1
|
|
return found_idx
|
|
|
|
|
|
def exclude_tests(
|
|
exclude_list, selected_tests, exclude_message=None, exact_match=False
|
|
):
|
|
for exclude_test in exclude_list:
|
|
tests_copy = selected_tests[:]
|
|
for test in tests_copy:
|
|
if (
|
|
not exact_match and test.startswith(exclude_test)
|
|
) or test == exclude_test:
|
|
if exclude_message is not None:
|
|
print_to_stderr("Excluding {} {}".format(test, exclude_message))
|
|
selected_tests.remove(test)
|
|
return selected_tests
|
|
|
|
|
|
def must_serial(file: str) -> bool:
|
|
return (
|
|
os.getenv("PYTORCH_TEST_RUN_EVERYTHING_IN_SERIAL", "0") == "1"
|
|
or "distributed" in os.getenv("TEST_CONFIG", "")
|
|
or "dynamo" in os.getenv("TEST_CONFIG", "")
|
|
or "distributed" in file
|
|
or file in CUSTOM_HANDLERS
|
|
or file in RUN_PARALLEL_BLOCKLIST
|
|
or file in CI_SERIAL_LIST
|
|
or file in JIT_EXECUTOR_TESTS
|
|
or file in ONNX_SERIAL_LIST
|
|
)
|
|
|
|
|
|
def can_run_in_pytest(test):
|
|
return os.getenv("PYTORCH_TEST_DO_NOT_USE_PYTEST", "0") == "0"
|
|
|
|
|
|
def get_selected_tests(options):
|
|
selected_tests = options.include
|
|
|
|
# filter if there's JIT only and distributed only test options
|
|
if options.jit:
|
|
selected_tests = list(
|
|
filter(lambda test_name: "jit" in test_name, selected_tests)
|
|
)
|
|
|
|
if options.distributed_tests:
|
|
selected_tests = list(
|
|
filter(lambda test_name: test_name in DISTRIBUTED_TESTS, selected_tests)
|
|
)
|
|
|
|
# Filter to only run core tests when --core option is specified
|
|
if options.core:
|
|
selected_tests = list(
|
|
filter(lambda test_name: test_name in CORE_TEST_LIST, selected_tests)
|
|
)
|
|
|
|
# Filter to only run functorch tests when --functorch option is specified
|
|
if options.functorch:
|
|
selected_tests = [tname for tname in selected_tests if tname in FUNCTORCH_TESTS]
|
|
|
|
if options.mps:
|
|
selected_tests = ["test_mps", "test_metal"]
|
|
else:
|
|
# Exclude all mps tests otherwise
|
|
options.exclude.extend(["test_mps", "test_metal"])
|
|
|
|
# Filter to only run onnx tests when --onnx option is specified
|
|
onnx_tests = [tname for tname in selected_tests if tname in ONNX_TESTS]
|
|
if options.onnx:
|
|
selected_tests = onnx_tests
|
|
else:
|
|
# Exclude all onnx tests otherwise
|
|
options.exclude.extend(onnx_tests)
|
|
|
|
# process reordering
|
|
if options.bring_to_front:
|
|
to_front = set(options.bring_to_front)
|
|
selected_tests = options.bring_to_front + list(
|
|
filter(lambda name: name not in to_front, selected_tests)
|
|
)
|
|
|
|
if options.first:
|
|
first_index = find_test_index(options.first, selected_tests)
|
|
selected_tests = selected_tests[first_index:]
|
|
|
|
if options.last:
|
|
last_index = find_test_index(options.last, selected_tests, find_last_index=True)
|
|
selected_tests = selected_tests[: last_index + 1]
|
|
|
|
# process exclusion
|
|
if options.exclude_jit_executor:
|
|
options.exclude.extend(JIT_EXECUTOR_TESTS)
|
|
|
|
if options.exclude_distributed_tests:
|
|
options.exclude.extend(DISTRIBUTED_TESTS)
|
|
|
|
# these tests failing in CUDA 11.6 temporary disabling. issue https://github.com/pytorch/pytorch/issues/75375
|
|
if torch.version.cuda is not None and LooseVersion(torch.version.cuda) >= "11.6":
|
|
options.exclude.extend(["distributions/test_constraints"])
|
|
|
|
selected_tests = exclude_tests(options.exclude, selected_tests)
|
|
|
|
if sys.platform == "win32" and not options.ignore_win_blocklist:
|
|
target_arch = os.environ.get("VSCMD_ARG_TGT_ARCH")
|
|
if target_arch != "x64":
|
|
WINDOWS_BLOCKLIST.append("cpp_extensions_aot_no_ninja")
|
|
WINDOWS_BLOCKLIST.append("cpp_extensions_aot_ninja")
|
|
WINDOWS_BLOCKLIST.append("cpp_extensions_jit")
|
|
WINDOWS_BLOCKLIST.append("jit")
|
|
WINDOWS_BLOCKLIST.append("jit_fuser")
|
|
|
|
selected_tests = exclude_tests(WINDOWS_BLOCKLIST, selected_tests, "on Windows")
|
|
|
|
elif TEST_WITH_ROCM:
|
|
selected_tests = exclude_tests(ROCM_BLOCKLIST, selected_tests, "on ROCm")
|
|
|
|
# skip all distributed tests if distributed package is not available.
|
|
if not dist.is_available():
|
|
selected_tests = exclude_tests(
|
|
DISTRIBUTED_TESTS,
|
|
selected_tests,
|
|
"PyTorch is built without distributed support.",
|
|
)
|
|
|
|
# skip tests that require LAPACK when it's not available
|
|
if not torch._C.has_lapack:
|
|
selected_tests = exclude_tests(
|
|
TESTS_REQUIRING_LAPACK,
|
|
selected_tests,
|
|
"PyTorch is built without LAPACK support.",
|
|
)
|
|
|
|
if is_slow_gradcheck_env():
|
|
selected_tests = exclude_tests(
|
|
TESTS_NOT_USING_GRADCHECK,
|
|
selected_tests,
|
|
"Running in slow gradcheck mode, skipping tests "
|
|
"that don't use gradcheck.",
|
|
exact_match=True,
|
|
)
|
|
|
|
selected_tests = [parse_test_module(x) for x in selected_tests]
|
|
|
|
# sharding
|
|
which_shard, num_shards = 1, 1
|
|
if options.shard:
|
|
assert len(options.shard) == 2, "Unexpected shard format"
|
|
assert min(options.shard) > 0, "Shards must be positive numbers"
|
|
which_shard, num_shards = options.shard
|
|
assert (
|
|
which_shard <= num_shards
|
|
), "Selected shard must be less than or equal to total number of shards"
|
|
assert num_shards <= len(
|
|
selected_tests
|
|
), f"Number of shards must be less than {len(selected_tests)}"
|
|
|
|
# Download previous test times to make sharding decisions
|
|
path = os.path.join(str(REPO_ROOT), TEST_TIMES_FILE)
|
|
if os.path.exists(path):
|
|
with open(path, "r") as f:
|
|
test_file_times = cast(Dict[str, Any], json.load(f))
|
|
else:
|
|
test_file_times = {}
|
|
test_config = os.environ.get("TEST_CONFIG")
|
|
if test_config not in test_file_times:
|
|
print(
|
|
"::warning:: Gathered no stats from artifacts. Proceeding with default sharding plan."
|
|
)
|
|
else:
|
|
print("Found test time stats from artifacts")
|
|
|
|
# Do sharding
|
|
test_file_times_config = test_file_times.get(test_config, {})
|
|
shards = calculate_shards(
|
|
num_shards, selected_tests, test_file_times_config, must_serial=must_serial
|
|
)
|
|
_, tests_from_shard = shards[which_shard - 1]
|
|
selected_tests = tests_from_shard
|
|
|
|
return selected_tests
|
|
|
|
|
|
def run_test_module(test: ShardedTest, test_directory: str, options) -> Optional[str]:
|
|
maybe_set_hip_visible_devies()
|
|
|
|
# Printing the date here can help diagnose which tests are slow
|
|
print_to_stderr("Running {} ... [{}]".format(str(test), datetime.now()))
|
|
handler = CUSTOM_HANDLERS.get(test.name, run_test)
|
|
return_code = handler(test, test_directory, options)
|
|
assert isinstance(return_code, int) and not isinstance(
|
|
return_code, bool
|
|
), f"While running {str(test)} got non integer return code {return_code}"
|
|
if return_code == 0:
|
|
return None
|
|
|
|
message = f"{str(test)} failed!"
|
|
if return_code < 0:
|
|
# subprocess.Popen returns the child process' exit signal as
|
|
# return code -N, where N is the signal number.
|
|
signal_name = SIGNALS_TO_NAMES_DICT[-return_code]
|
|
message += f" Received signal: {signal_name}"
|
|
return message
|
|
|
|
|
|
def main():
|
|
options = parse_args()
|
|
|
|
test_directory = str(REPO_ROOT / "test")
|
|
selected_tests = get_selected_tests(options)
|
|
|
|
if options.verbose:
|
|
print_to_stderr(
|
|
"Selected tests:\n {}".format("\n ".join(str(x) for x in selected_tests))
|
|
)
|
|
|
|
if options.dry_run:
|
|
return
|
|
|
|
if options.coverage and not PYTORCH_COLLECT_COVERAGE:
|
|
shell(["coverage", "erase"])
|
|
|
|
if IS_CI:
|
|
selected_tests = get_reordered_tests(selected_tests)
|
|
# downloading test cases configuration to local environment
|
|
get_test_case_configs(dirpath=test_directory)
|
|
|
|
if options.dynamo:
|
|
os.environ["PYTORCH_TEST_WITH_DYNAMO"] = "1"
|
|
elif options.inductor:
|
|
os.environ["PYTORCH_TEST_WITH_INDUCTOR"] = "1"
|
|
|
|
failure_messages = []
|
|
|
|
# parallel = in parallel with other files
|
|
# serial = this file on it's own. The file might still be run in parallel with itself (ex test_ops)
|
|
selected_tests_parallel = [x for x in selected_tests if not must_serial(x.name)]
|
|
selected_tests_serial = [
|
|
x for x in selected_tests if x not in selected_tests_parallel
|
|
]
|
|
print_to_stderr(
|
|
"parallel (file granularity) tests:\n {}".format(
|
|
"\n ".join(str(x) for x in selected_tests_parallel)
|
|
)
|
|
)
|
|
print_to_stderr(
|
|
"serial (file granularity) tests:\n {}".format(
|
|
"\n ".join(str(x) for x in selected_tests_serial)
|
|
)
|
|
)
|
|
|
|
# See Note [ROCm parallel CI testing]
|
|
pool = get_context("spawn").Pool(
|
|
NUM_PROCS, maxtasksperchild=None if torch.version.hip else 1
|
|
)
|
|
os.makedirs(REPO_ROOT / "test" / "test-reports", exist_ok=True)
|
|
|
|
def handle_error_messages(err_message):
|
|
if err_message is None:
|
|
return False
|
|
failure_messages.append(err_message)
|
|
print_to_stderr(err_message)
|
|
return True
|
|
|
|
def parallel_test_completion_callback(err_message):
|
|
test_failed = handle_error_messages(err_message)
|
|
if test_failed and not options.continue_through_error:
|
|
pool.terminate()
|
|
|
|
try:
|
|
os.environ["NUM_PARALLEL_PROCS"] = str(NUM_PROCS)
|
|
for test in selected_tests_parallel:
|
|
options_clone = copy.deepcopy(options)
|
|
if can_run_in_pytest(test):
|
|
options_clone.pytest = True
|
|
pool.apply_async(
|
|
run_test_module,
|
|
args=(test, test_directory, options_clone),
|
|
callback=parallel_test_completion_callback,
|
|
)
|
|
pool.close()
|
|
pool.join()
|
|
del os.environ["NUM_PARALLEL_PROCS"]
|
|
|
|
if not options.continue_through_error and len(failure_messages) != 0:
|
|
raise RuntimeError(
|
|
"\n".join(failure_messages)
|
|
+ "\n\nTip: You can keep running tests even on failure by "
|
|
"passing --keep-going to run_test.py.\n"
|
|
"If running on CI, add the 'keep-going' label to "
|
|
"your PR and rerun your jobs."
|
|
)
|
|
|
|
for test in selected_tests_serial:
|
|
options_clone = copy.deepcopy(options)
|
|
if can_run_in_pytest(test):
|
|
options_clone.pytest = True
|
|
err_message = run_test_module(test, test_directory, options_clone)
|
|
test_failed = handle_error_messages(err_message)
|
|
if test_failed and not options.continue_through_error:
|
|
raise RuntimeError(err_message)
|
|
finally:
|
|
pool.terminate()
|
|
pool.join()
|
|
|
|
if options.coverage:
|
|
from coverage import Coverage
|
|
|
|
with set_cwd(test_directory):
|
|
cov = Coverage()
|
|
if PYTORCH_COLLECT_COVERAGE:
|
|
cov.load()
|
|
cov.combine(strict=False)
|
|
cov.save()
|
|
if not PYTORCH_COLLECT_COVERAGE:
|
|
cov.html_report()
|
|
|
|
if len(failure_messages) != 0:
|
|
for err in failure_messages:
|
|
print_to_stderr(err)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|