mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: zdevito soumith Sorry about the previous PR, had some git issues. This is the same exact code as the previous PR but updated w.r.t pytorch/master. fixes #13254 Pull Request resolved: https://github.com/pytorch/pytorch/pull/14181 Differential Revision: D13117688 Pulled By: soumith fbshipit-source-id: 044840b2c7a0101ef43dd16655fd9a0f9981f53f
550 lines
20 KiB
C++
550 lines
20 KiB
C++
#include <google/protobuf/util/json_util.h>
|
|
#include <google/protobuf/util/type_resolver_util.h>
|
|
|
|
#include "torch/csrc/jit/import.h"
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/utils/functional.h"
|
|
#include "torch/csrc/jit/assertions.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
#include "caffe2/proto/torch_pb.h"
|
|
#include "caffe2/serialize/inline_container.h"
|
|
#include "onnx/onnx_pb.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <fstream>
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
namespace {
|
|
|
|
namespace onnx = ::ONNX_NAMESPACE;
|
|
|
|
// IR graph construction
|
|
|
|
class MethodDecoder {
|
|
public:
|
|
MethodDecoder(
|
|
const onnx::ModelProto& model_proto,
|
|
const std::unordered_map<std::string, at::Tensor*>& param_map,
|
|
script::Module* parent_module,
|
|
std::unordered_map<uint64_t, std::shared_ptr<at::Storage>>* storage_map,
|
|
PyTorchStreamReader* stream_reader_);
|
|
|
|
private:
|
|
std::shared_ptr<Graph> buildGraph(const onnx::GraphProto& graph_proto);
|
|
|
|
void buildBlock(const onnx::GraphProto& graph_proto, Block* block,
|
|
std::unordered_map<std::string, Value*>& value_map);
|
|
|
|
void buildBlocks(const std::vector<onnx::GraphProto>& graphs_, Node* node,
|
|
std::unordered_map<std::string, Value*>& value_map);
|
|
|
|
void buildValue(Value* value, const onnx::ValueInfoProto& valueinfo_proto);
|
|
|
|
void buildIntermediateValue(Value* value, const std::string& name);
|
|
|
|
at::ScalarType onnxTypeToATenType(int32_t tensor_proto);
|
|
|
|
at::Tensor buildTensor(const onnx::TensorProto& tensor_proto);
|
|
|
|
TypePtr buildType(const onnx::TypeProto& type_proto);
|
|
|
|
at::Tensor buildTensorCommon(const onnx::TensorProto& tensor_proto,
|
|
const uint64_t record_number,
|
|
const int64_t storage_offset,
|
|
const std::vector<int64_t>& strides);
|
|
|
|
std::pair<std::shared_ptr<script::Module>, std::string> parseFullName(
|
|
ModuleLookup module_lookup,
|
|
const std::string fullname);
|
|
|
|
PyTorchStreamReader* stream_reader_;
|
|
std::unordered_map<uint64_t, std::shared_ptr<at::Storage>>* storage_map_;
|
|
std::unordered_map<std::string, const onnx::TypeProto*> value_type_map_;
|
|
};
|
|
|
|
at::ScalarType MethodDecoder::onnxTypeToATenType(int32_t onnx_type) {
|
|
switch(onnx_type) {
|
|
case onnx::TensorProto_DataType_UINT8:
|
|
return at::kByte;
|
|
case onnx::TensorProto_DataType_INT8:
|
|
return at::kChar;
|
|
case onnx::TensorProto_DataType_INT16:
|
|
return at::kShort;
|
|
case onnx::TensorProto_DataType_INT32:
|
|
return at::kInt;
|
|
case onnx::TensorProto_DataType_INT64:
|
|
return at::kLong;
|
|
case onnx::TensorProto_DataType_FLOAT16:
|
|
return at::kHalf;
|
|
case onnx::TensorProto_DataType_FLOAT:
|
|
return at::kFloat;
|
|
case onnx::TensorProto_DataType_DOUBLE:
|
|
return at::kDouble;
|
|
default:
|
|
throw std::runtime_error("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
void MethodDecoder::buildBlocks(
|
|
const std::vector<onnx::GraphProto>& graphs_,
|
|
Node* node,
|
|
std::unordered_map<std::string, Value*>& value_map) {
|
|
for (auto g_ : graphs_) {
|
|
auto block = node->addBlock();
|
|
buildBlock(g_, block, value_map);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Graph> MethodDecoder::buildGraph(
|
|
const onnx::GraphProto& graph_proto) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> value_map;
|
|
|
|
buildBlock(graph_proto, graph->block(), value_map);
|
|
|
|
return graph;
|
|
}
|
|
|
|
void MethodDecoder::buildBlock(
|
|
const onnx::GraphProto& graph_proto,
|
|
Block* block,
|
|
std::unordered_map<std::string, Value*>& value_map) {
|
|
for (auto &subtype : graph_proto.value_info()) {
|
|
value_type_map_[subtype.name()] = &subtype.type();
|
|
}
|
|
|
|
for (auto & input : graph_proto.input()) {
|
|
auto value = block->addInput();
|
|
value_map[input.name()] = value;
|
|
buildValue(value, input);
|
|
}
|
|
|
|
for (auto & node_ : graph_proto.node()) {
|
|
JIT_ASSERT(node_.op_type() != "PythonOp");
|
|
|
|
auto node = block->owningGraph()->create(Symbol::fromDomainAndUnqualString(node_.domain(), node_.op_type()),
|
|
node_.output().size());
|
|
|
|
for (auto & attr : node_.attribute()) {
|
|
Symbol name = Symbol::attr(attr.name());
|
|
|
|
switch(attr.type()) {
|
|
case onnx::AttributeProto_AttributeType_UNDEFINED:
|
|
throw std::runtime_error("UNDEFINED attribute unsupported");
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_FLOAT:
|
|
node->f_(name, attr.f());
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_INT:
|
|
node->i_(name, attr.i());
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_STRING:
|
|
node->s_(name, std::move(attr.s()));
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_TENSOR:
|
|
node->t_(name, buildTensor(attr.t()));
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_GRAPH:
|
|
node->g_(name, buildGraph(attr.g()));
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_FLOATS:
|
|
node->fs_(name, {attr.floats().begin(), attr.floats().end()});
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_INTS:
|
|
node->is_(name, {attr.ints().begin(), attr.ints().end()});
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_STRINGS:
|
|
node->ss_(name, {attr.strings().begin(), attr.strings().end()});
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_TENSORS:
|
|
node->ts_(name, fmap(attr.tensors(), [this](const onnx::TensorProto& t) {
|
|
return buildTensor(t);
|
|
}));
|
|
break;
|
|
case onnx::AttributeProto_AttributeType_GRAPHS:
|
|
if (attr.name() == "_blocks") {
|
|
buildBlocks({attr.graphs().begin(), attr.graphs().end()}, node, value_map);
|
|
}
|
|
else {
|
|
node->gs_(name, fmap(attr.graphs(), [this](const onnx::GraphProto& g_) {
|
|
return buildGraph(g_);
|
|
}));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (auto & input : node_.input()) {
|
|
auto v = value_map[input];
|
|
node->addInput(v);
|
|
}
|
|
|
|
for (int i=0; i<node_.output().size(); i++) {
|
|
value_map[node_.output(i)] = node->outputs()[i];
|
|
buildIntermediateValue(node->outputs()[i], node_.output(i));
|
|
}
|
|
|
|
block->appendNode(node);
|
|
}
|
|
|
|
for (auto & output : graph_proto.output()) {
|
|
Value* v = value_map.at(output.name());
|
|
buildValue(v, output);
|
|
block->registerOutput(v);
|
|
}
|
|
}
|
|
|
|
TypePtr MethodDecoder::buildType(const onnx::TypeProto& type_proto) {
|
|
auto tensortype_proto = type_proto.tensor_type();
|
|
auto shape_proto = tensortype_proto.shape();
|
|
auto kind = type_proto.denotation();
|
|
if (kind == "DynamicType") {
|
|
return DynamicType::get();
|
|
} else if (kind == "TensorType") {
|
|
auto dims = shape_proto.dim_size();
|
|
return TensorType::create(onnxTypeToATenType(tensortype_proto.elem_type()), at::kCPU, dims);
|
|
} else if (kind == "CompleteTensorType") {
|
|
// first half of the dims are sizes and the second half are strides
|
|
auto total = shape_proto.dim_size();
|
|
std::vector<int64_t> sizes, strides;
|
|
for (int i = 0; i < total / 2; i++) {
|
|
sizes.push_back(shape_proto.dim(i).dim_value());
|
|
}
|
|
for (int i = total / 2; i < total; i++) {
|
|
strides.push_back(shape_proto.dim(i).dim_value());
|
|
}
|
|
return CompleteTensorType::create(onnxTypeToATenType(tensortype_proto.elem_type()), at::kCPU, sizes, strides);
|
|
} else if (kind == "TupleType") {
|
|
std::vector<TypePtr> elems;
|
|
for (auto &subkind : shape_proto.dim()) {
|
|
auto it = value_type_map_.find(subkind.dim_param());
|
|
JIT_ASSERT(it != value_type_map_.end());
|
|
elems.push_back(buildType(*it->second));
|
|
}
|
|
return TupleType::create(elems);
|
|
} else if (kind == "ListType") {
|
|
auto subkind = shape_proto.dim(0);
|
|
auto it = value_type_map_.find(subkind.dim_param());
|
|
JIT_ASSERT(it != value_type_map_.end());
|
|
return ListType::create(buildType(*it->second));
|
|
} else if (kind == "NumberType") {
|
|
return NumberType::get();
|
|
} else if (kind == "FloatType") {
|
|
return FloatType::get();
|
|
} else if (kind == "IntType") {
|
|
return IntType::get();
|
|
} else if (kind == "BoolType") {
|
|
return BoolType::get();
|
|
} else if (kind == "NoneType") {
|
|
return NoneType::get();
|
|
} else if (kind == "GeneratorType") {
|
|
return GeneratorType::get();
|
|
} else if (kind == "StringType") {
|
|
return StringType::get();
|
|
} else if (kind == "OptionalType") {
|
|
auto subkind = shape_proto.dim(0);
|
|
auto it = value_type_map_.find(subkind.dim_param());
|
|
JIT_ASSERT(it != value_type_map_.end());
|
|
return OptionalType::create(buildType(*it->second));
|
|
} else if (kind.find("TypeVar:") == 0) {
|
|
return VarType::create(kind.substr(strlen("TypeVar:")));
|
|
} else {
|
|
throw std::runtime_error("unexpected string for type kind: " + kind);
|
|
}
|
|
}
|
|
|
|
void MethodDecoder::buildValue(
|
|
Value* value,
|
|
const onnx::ValueInfoProto& valueinfo_proto) {
|
|
value->setType(buildType(valueinfo_proto.type()));
|
|
}
|
|
|
|
void MethodDecoder::buildIntermediateValue(
|
|
Value* value,
|
|
const std::string& name) {
|
|
auto it = value_type_map_.find(name);
|
|
JIT_ASSERT(it != value_type_map_.end());
|
|
value->setType(buildType(*it->second));
|
|
}
|
|
|
|
at::Tensor MethodDecoder::buildTensor(const onnx::TensorProto& tensor_proto) {
|
|
std::vector<int64_t> strides;
|
|
// We've stored two other values (record no., storage_offset) before strides; ignore it
|
|
std::move(tensor_proto.int64_data().begin() + 2, tensor_proto.int64_data().end(), std::back_inserter(strides));
|
|
return buildTensorCommon(tensor_proto,
|
|
/* record_number = */ tensor_proto.int64_data(0),
|
|
/* storage_offset = */ tensor_proto.int64_data(1),
|
|
strides);
|
|
}
|
|
|
|
at::Tensor MethodDecoder::buildTensorCommon(
|
|
const onnx::TensorProto& tensor_proto,
|
|
const uint64_t record_number,
|
|
const int64_t storage_offset,
|
|
const std::vector<int64_t>& strides) {
|
|
// NB: storage_offset and strides are passed in separately because
|
|
// because they are encoded differently for parameters and tensors
|
|
auto type = onnxTypeToATenType(tensor_proto.data_type());
|
|
std::vector<int64_t> dims;
|
|
std::move(tensor_proto.dims().begin(), tensor_proto.dims().end(), std::back_inserter(dims));
|
|
|
|
// Find or create the storage
|
|
auto storage_it = storage_map_->find(record_number);
|
|
if (storage_it == storage_map_->end()) {
|
|
at::DataPtr storage_ptr;
|
|
int64_t size;
|
|
std::tie(storage_ptr, size) =
|
|
stream_reader_->getRecordWithKey(record_number);
|
|
auto storage = std::make_shared<at::Storage>(
|
|
at::CPU(type).typeMeta(),
|
|
std::move(storage_ptr),
|
|
size / at::CPU(type).typeMeta().itemsize(),
|
|
nullptr);
|
|
storage_map_->insert(std::make_pair(record_number, storage));
|
|
return at::CPU(type)._th_tensor(*storage, storage_offset, dims, strides);
|
|
}
|
|
|
|
auto storage = storage_it->second.get();
|
|
return at::CPU(type)._th_tensor(*storage, storage_offset, dims, strides);
|
|
}
|
|
|
|
// Given a full name of a parameter or method,
|
|
// return the parent submodule and local name
|
|
std::pair<std::shared_ptr<script::Module>, std::string> MethodDecoder::
|
|
parseFullName(ModuleLookup module_lookup, const std::string fullname) {
|
|
AT_ASSERT(!fullname.empty());
|
|
std::vector<std::string> vec;
|
|
std::stringstream ss(fullname);
|
|
std::string name;
|
|
while (std::getline(ss, name, '.')) {
|
|
vec.push_back(name);
|
|
}
|
|
|
|
std::string last = vec.back();
|
|
vec.pop_back();
|
|
return std::make_pair(module_lookup(vec), std::move(last));
|
|
}
|
|
|
|
MethodDecoder::MethodDecoder(
|
|
const onnx::ModelProto& model_proto,
|
|
const std::unordered_map<std::string, at::Tensor*>& param_map,
|
|
script::Module* parent_module,
|
|
std::unordered_map<uint64_t, std::shared_ptr<at::Storage>>* storage_map,
|
|
PyTorchStreamReader* stream_reader) {
|
|
storage_map_ = storage_map;
|
|
stream_reader_ = stream_reader;
|
|
const auto& graph_proto = model_proto.graph();
|
|
for (const auto& node_proto : graph_proto.node()) {
|
|
std::vector<at::Tensor*> member_inputs;
|
|
const std::string& name = node_proto.name();
|
|
for (const auto& param_name : node_proto.input()) {
|
|
auto it = param_map.find(param_name);
|
|
AT_ASSERTM(it != param_map.end(), "cannot find parameter ", param_name);
|
|
member_inputs.push_back(it->second);
|
|
}
|
|
auto graph = buildGraph(node_proto.attribute(0).g());
|
|
// has_domain field has a string iff the method was optimized
|
|
parent_module->set_optimized(node_proto.has_domain());
|
|
parent_module->create_method(name, graph, member_inputs);
|
|
// We store the schema in the docstring so we can parse the schema and
|
|
// assign it to the method.
|
|
auto schema = parseSchema(node_proto.doc_string());
|
|
parent_module->get_method(name).setSchema(std::move(schema));
|
|
}
|
|
}
|
|
|
|
// this is a deserializer class which loads script modules from pt files. the
|
|
// content of the file is written using PyTorchStreamWriter, for details please
|
|
// check caffe2/serialize/inline_container.h. all the records except the last
|
|
// one are tensor data, and the last record is a serialized ModelProto, defined
|
|
// in caffe2/proto/torch.proto. ModelProto contains all the metadata of the
|
|
// model, and it is serialized as json.
|
|
class ScriptModuleDeserializer final {
|
|
public:
|
|
ScriptModuleDeserializer(const std::string& filename)
|
|
: ifs_(filename, std::ifstream::in | std::ifstream::binary),
|
|
reader_(&ifs_) {
|
|
// TODO appropriate support for mmap, right now still use stream reader
|
|
}
|
|
ScriptModuleDeserializer(std::istream* is) : ifs_(), reader_(is) {}
|
|
void deserialize(ModuleLookup module_lookup) {
|
|
torch::ModelDef model_def;
|
|
at::DataPtr data_ptr;
|
|
size_t data_size;
|
|
std::tie(data_ptr, data_size) = reader_.getLastRecord();
|
|
// NB: cannot use JsonStringToMessage, since fbcode's protobuf is too old
|
|
// be consistent with JsonStringToMessage
|
|
std::string url_prefix = "type.googleapis.com";
|
|
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
|
|
::google::protobuf::util::NewTypeResolverForDescriptorPool(
|
|
url_prefix, model_def.GetDescriptor()->file()->pool()));
|
|
std::string json_string = std::string(
|
|
static_cast<char*>(data_ptr.get()),
|
|
static_cast<char*>(data_ptr.get()) + data_size);
|
|
std::string binary_string;
|
|
auto convert_result = ::google::protobuf::util::JsonToBinaryString(
|
|
resolver.get(),
|
|
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
|
|
json_string,
|
|
&binary_string);
|
|
if (!convert_result.ok()) {
|
|
std::stringstream ss;
|
|
ss << convert_result;
|
|
AT_ERROR(ss.str());
|
|
}
|
|
AT_ASSERTM(
|
|
model_def.ParseFromString(binary_string),
|
|
"JSON transcoder produced invalid protobuf output.");
|
|
moduleLookup_ = module_lookup;
|
|
const auto& module_def = model_def.main_module();
|
|
collectParamsInfo(module_def, module_def.name());
|
|
// TODO: this can be simplified when C++/Python interop lands,
|
|
// and the submodules would be created as the same in either C++ or Python
|
|
std::shared_ptr<script::Module> module = moduleLookup_(moduleStack_);
|
|
convertModule(module_def, module.get());
|
|
}
|
|
|
|
private:
|
|
void collectParamsInfo(
|
|
const torch::ModuleDef& module_def,
|
|
const std::string& prefix) {
|
|
std::shared_ptr<script::Module> module = moduleLookup_(moduleStack_);
|
|
for (int i = 0; i < module_def.parameters_size(); ++i) {
|
|
const torch::ParameterDef& param_def = module_def.parameters(i);
|
|
at::Tensor tensor = createTensor(param_def.tensor());
|
|
autograd::Variable variable =
|
|
autograd::make_variable(tensor, param_def.require_gradient());
|
|
module->register_parameter(
|
|
param_def.name(), variable, param_def.is_buffer());
|
|
parameterMap_[prefix + param_def.name()] =
|
|
module->parameter_slot(param_def.name());
|
|
}
|
|
for (int i = 0; i < module_def.submodules_size(); ++i) {
|
|
const torch::ModuleDef& sub_def = module_def.submodules(i);
|
|
moduleStack_.push_back(sub_def.name());
|
|
collectParamsInfo(sub_def, prefix + sub_def.name() + ".");
|
|
moduleStack_.pop_back();
|
|
}
|
|
}
|
|
void convertModule(
|
|
const torch::ModuleDef& module_def,
|
|
script::Module* module) {
|
|
for (int i = 0; i < module_def.methods_size(); ++i) {
|
|
const torch::MethodDef& method_def = module_def.methods(i);
|
|
// TODO read unhacked torch script, right now it's serialized onnx proto
|
|
::ONNX_NAMESPACE::ModelProto method_proto;
|
|
AT_ASSERTM(
|
|
method_proto.ParseFromString(method_def.onnx_proto()),
|
|
"cannot parse method proto (i.e., hacked onnx proto)");
|
|
MethodDecoder decoder(
|
|
method_proto, parameterMap_, module, &storageMap_, &reader_);
|
|
(void)decoder;
|
|
}
|
|
for (int i = 0; i < module_def.submodules_size(); ++i) {
|
|
const torch::ModuleDef& sub_def = module_def.submodules(i);
|
|
moduleStack_.push_back(sub_def.name());
|
|
std::shared_ptr<script::Module> sub = moduleLookup_(moduleStack_);
|
|
convertModule(sub_def, sub.get());
|
|
moduleStack_.pop_back();
|
|
}
|
|
}
|
|
at::Tensor createTensor(const caffe2::TensorProto& tensor_proto) {
|
|
std::vector<int64_t> dims;
|
|
for (int i = 0; i < tensor_proto.dims_size(); ++i) {
|
|
dims.push_back(tensor_proto.dims(i));
|
|
}
|
|
AT_ASSERT(
|
|
tensor_proto.storage_type() ==
|
|
caffe2::TensorProto_StorageType_EXTERNAL);
|
|
const caffe2::ExternalDataProto& external_data =
|
|
tensor_proto.external_data();
|
|
std::vector<int64_t> strides;
|
|
for (int i = 0; i < external_data.strides_size(); ++i) {
|
|
strides.push_back(external_data.strides(i));
|
|
}
|
|
auto type = at::typeMetaToScalarType(
|
|
caffe2::DataTypeToTypeMeta(tensor_proto.data_type()));
|
|
uint64_t record_id = c10::stoull(external_data.record_id());
|
|
AT_ASSERT(record_id != 0);
|
|
auto storage_it = storageMap_.find(record_id);
|
|
if (storage_it == storageMap_.end()) {
|
|
at::DataPtr storage_ptr;
|
|
uint64_t record_size;
|
|
std::tie(storage_ptr, record_size) = reader_.getRecordWithKey(record_id);
|
|
AT_ASSERT(record_size == external_data.record_size());
|
|
auto storage = std::make_shared<at::Storage>(
|
|
at::CPU(type).typeMeta(),
|
|
std::move(storage_ptr),
|
|
record_size / at::CPU(type).typeMeta().itemsize(),
|
|
nullptr); // NB: we didn't set any allocator for the tensor
|
|
storageMap_.insert(std::make_pair(record_id, storage));
|
|
return at::CPU(type)._th_tensor(
|
|
*storage, external_data.offset(), dims, strides);
|
|
}
|
|
return at::CPU(type)._th_tensor(
|
|
*(storage_it->second.get()), external_data.offset(), dims, strides);
|
|
}
|
|
std::ifstream ifs_;
|
|
PyTorchStreamReader reader_;
|
|
ModuleLookup moduleLookup_;
|
|
std::vector<std::string> moduleStack_;
|
|
std::unordered_map<uint64_t, std::shared_ptr<at::Storage>> storageMap_;
|
|
std::unordered_map<std::string, at::Tensor*> parameterMap_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void import_ir_module(
|
|
ModuleLookup module_lookup,
|
|
std::istream& in) {
|
|
ScriptModuleDeserializer deserializer(&in);
|
|
deserializer.deserialize(module_lookup);
|
|
}
|
|
|
|
void import_ir_module(
|
|
ModuleLookup module_lookup,
|
|
const std::string& filename) {
|
|
ScriptModuleDeserializer deserializer(filename);
|
|
deserializer.deserialize(module_lookup);
|
|
}
|
|
|
|
std::shared_ptr<script::Module> load(std::istream& in) {
|
|
auto module = std::make_shared<script::Module>();
|
|
|
|
auto module_lookup = [&](const std::vector<std::string>& qualified_name) {
|
|
std::shared_ptr<script::Module> curr = module;
|
|
for (const auto& name : qualified_name) {
|
|
if (curr->find_module(name) == nullptr) {
|
|
curr->register_module(name, std::make_shared<script::Module>());
|
|
}
|
|
curr = curr->get_module(name);
|
|
}
|
|
return curr;
|
|
};
|
|
|
|
ScriptModuleDeserializer deserializer(&in);
|
|
deserializer.deserialize(module_lookup);
|
|
|
|
return module;
|
|
}
|
|
|
|
std::shared_ptr<script::Module> load(const std::string& filename) {
|
|
std::ifstream in(filename, std::ios_base::binary);
|
|
|
|
AT_CHECK(! in.fail(), "load: could not open file ", filename);
|
|
|
|
auto module = load(in);
|
|
|
|
return module;
|
|
}
|
|
|
|
}}
|