mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: The other half of https://github.com/pytorch/pytorch/issues/56272. Pull Request resolved: https://github.com/pytorch/pytorch/pull/56290 Test Plan: CI should pass on the tip of this PR, and we know that the lint works because the following CI runs (before this PR was finished) failed: - https://github.com/pytorch/pytorch/runs/2384511062 - https://github.com/pytorch/pytorch/actions/runs/765036024 Reviewed By: seemethere Differential Revision: D27867219 Pulled By: samestep fbshipit-source-id: e648f07b6822867e70833e23ddafe7fb7eaca235
82 lines
3.4 KiB
Python
82 lines
3.4 KiB
Python
import torch
|
|
import copy
|
|
from torch.fx import GraphModule
|
|
from torch.fx.graph import Graph
|
|
from typing import Union, Dict, Any, List
|
|
|
|
class ObservedGraphModule(GraphModule):
|
|
|
|
def get_preserved_attr_names(self) -> List[str]:
|
|
return ['_activation_post_process_map',
|
|
'_activation_post_process_indexes',
|
|
'_patterns',
|
|
'_qconfig_map',
|
|
'_prepare_custom_config_dict',
|
|
'_node_name_to_scope']
|
|
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph):
|
|
preserved_attrs = dict()
|
|
for attr in self.get_preserved_attr_names():
|
|
preserved_attrs[attr] = getattr(root, attr)
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
|
|
# GraphModule does not copy attributes which are not in the __dict__
|
|
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
|
# to copy the quantization specific attributes correctly.
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedGraphModule(fake_mod, self.graph)
|
|
|
|
def is_observed_module(module: Any) -> bool:
|
|
return isinstance(module, ObservedGraphModule)
|
|
|
|
class ObservedStandaloneGraphModule(ObservedGraphModule):
|
|
def get_preserved_attr_names(self) -> List[str] :
|
|
return super().get_preserved_attr_names() + [
|
|
"_standalone_module_input_quantized_idxs",
|
|
"_standalone_module_output_quantized_idxs"
|
|
]
|
|
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedStandaloneGraphModule(fake_mod, self.graph)
|
|
|
|
def is_observed_standalone_module(module: Any) -> bool:
|
|
return isinstance(module, ObservedStandaloneGraphModule)
|
|
|
|
|
|
def _save_packed_weight(self, destination, prefix, keep_vars):
|
|
for attr_name in dir(self):
|
|
if "_packed_weight" in attr_name and \
|
|
isinstance(getattr(self, attr_name), torch._C.ScriptObject): # type: ignore[attr-defined]
|
|
packed_weight = getattr(self, attr_name)
|
|
destination[prefix + attr_name] = packed_weight
|
|
|
|
class QuantizedGraphModule(GraphModule):
|
|
""" This class is created to make sure PackedParams
|
|
(e.g. LinearPackedParams, Conv2dPackedParams) to appear in state_dict
|
|
so that we can serialize and deserialize quantized graph module with
|
|
torch.save(m.state_dict()) and m.load_state_dict(state_dict)
|
|
"""
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph):
|
|
super().__init__(root, graph)
|
|
self._register_state_dict_hook(_save_packed_weight)
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
attrs_to_pop = []
|
|
for attr_name in state_dict:
|
|
if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject): # type: ignore[attr-defined] # noqa: B950
|
|
setattr(self, attr_name, state_dict[attr_name])
|
|
attrs_to_pop.append(attr_name)
|
|
|
|
# pop the packed param attributesn
|
|
for attr_name in attrs_to_pop:
|
|
state_dict.pop(attr_name)
|
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|