mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Notable changes:
1. Enable CudaGraph related tests
2. Fix UT problems
3. EXPERIMENTAL Navi31 support. User should enable Navi31 support with Env Var `TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1`
Know Problem:
1. `test/test_transformers.py` will massive failures and/or NaN outputs with `--use-pytest`
+ Update: Confirmed skip `class TestSDPAPrivateUse1Only` can fix the problem with `--use-pytest`
Note:
AOTriton 0.7b adds support to nestedtenosrs+SDPA but need more work (and consequently a separate PR) to enable it.
Fixes #133540
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134498
Approved by: https://github.com/pruthvistony, https://github.com/jeffdaily, https://github.com/malfet
5553 lines
200 KiB
Python
5553 lines
200 KiB
Python
# Owner(s): ["module: functorch"]
|
|
import contextlib
|
|
import functools
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from functorch.experimental import control_flow
|
|
from functorch.experimental.control_flow import cond, UnsupportedAliasMutationException
|
|
from torch._higher_order_ops.associative_scan import associative_scan
|
|
from torch._higher_order_ops.scan import scan
|
|
from torch._higher_order_ops.while_loop import while_loop
|
|
from torch._subclasses.functional_tensor import (
|
|
CppFunctionalizeAPI,
|
|
FunctionalTensor,
|
|
FunctionalTensorMode,
|
|
PythonFunctionalizeAPI,
|
|
)
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
from torch.testing._internal.common_cuda import SM70OrLater
|
|
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
|
|
from torch.testing._internal.common_utils import (
|
|
decorateIf,
|
|
instantiate_parametrized_tests,
|
|
IS_WINDOWS,
|
|
parametrize,
|
|
requires_cuda,
|
|
run_tests,
|
|
skipIfRocm,
|
|
skipIfTorchDynamo,
|
|
TEST_WITH_TORCHDYNAMO,
|
|
TestCase,
|
|
xfailIfTorchDynamo,
|
|
)
|
|
|
|
|
|
# TODO: pull these helpers from AOTAutograd later
|
|
def to_fun(t):
|
|
if isinstance(t, torch.Tensor):
|
|
return FunctionalTensor.to_functional(t)
|
|
return t
|
|
|
|
|
|
def from_fun(t):
|
|
if not isinstance(t, FunctionalTensor):
|
|
# quick sanity assert
|
|
if isinstance(t, torch.Tensor):
|
|
assert not torch._is_functional_tensor(t)
|
|
return t
|
|
torch._sync(t)
|
|
return torch._from_functional_tensor(t.elem)
|
|
|
|
|
|
def to_fun_old(t):
|
|
if isinstance(t, torch.Tensor) and not torch._is_functional_tensor(t):
|
|
out = torch._to_functional_tensor(t)
|
|
torch._mirror_autograd_meta_to(t, out)
|
|
return out
|
|
return t
|
|
|
|
|
|
def from_fun_old(t):
|
|
# quick sanity assert
|
|
if isinstance(t, torch.Tensor):
|
|
assert torch._is_functional_tensor(t)
|
|
torch._sync(t)
|
|
return torch._from_functional_tensor(t)
|
|
return t
|
|
|
|
|
|
def _fake_map(f, x, *args):
|
|
from functorch.experimental.control_flow import _stack_pytree, _unstack_pytree
|
|
|
|
x_pytrees = _unstack_pytree(x)
|
|
zs = []
|
|
for xp in x_pytrees:
|
|
zs.append(f(xp, *args))
|
|
return _stack_pytree(zs)
|
|
|
|
|
|
def _fake_while_loop(cond_fn, body_fn, operands):
|
|
while cond_fn(*operands):
|
|
operands = body_fn(*operands)
|
|
return operands
|
|
|
|
|
|
def _fake_associative_scan(combine_fn, xs, dim, reverse=False):
|
|
inp_leaves, spec = pytree.tree_flatten(xs)
|
|
result_flat = []
|
|
num_leaves = len(inp_leaves)
|
|
op = reversed if reverse else lambda x: x
|
|
|
|
for ind in op(range(inp_leaves[0].size(dim))):
|
|
r = [
|
|
inp_leaves[leave_ind][(slice(None),) * dim + (ind,)]
|
|
for leave_ind in range(num_leaves)
|
|
]
|
|
if (ind > 0 and not reverse) or (
|
|
ind < (inp_leaves[0].size(dim) - 1) and reverse
|
|
):
|
|
r = combine_fn(
|
|
pytree.tree_unflatten(result_flat[-1], spec),
|
|
pytree.tree_unflatten(r, spec),
|
|
)
|
|
r_flat, _ = pytree.tree_flatten(r)
|
|
result_flat.append(r_flat)
|
|
|
|
results = [
|
|
torch.stack([e[leave_ind] for e in op(result_flat)], dim)
|
|
for leave_ind in range(num_leaves)
|
|
]
|
|
return pytree.tree_unflatten(results, spec)
|
|
|
|
|
|
def _fake_scan(combine_fn, init, xs=None, dim=0, reverse=False):
|
|
carry_leaves, carry_spec = pytree.tree_flatten(init)
|
|
inp_leaves, inp_spec = pytree.tree_flatten(xs)
|
|
if xs is None or len(inp_leaves) == 0:
|
|
return init, []
|
|
result_flat = []
|
|
carry = carry_leaves
|
|
op = reversed if reverse else lambda x: x
|
|
|
|
dummy_carry, dummy_out = combine_fn(
|
|
pytree.tree_unflatten(carry, carry_spec),
|
|
pytree.tree_unflatten(
|
|
[torch._ops.ops.aten.slice(elem, dim, 0, 1, 1) for elem in inp_leaves],
|
|
inp_spec,
|
|
),
|
|
)
|
|
dummy_out_leaves, dummy_out_spec = pytree.tree_flatten(dummy_out)
|
|
num_leaves = len(dummy_out_leaves)
|
|
|
|
for ind in op(range(inp_leaves[0].size(dim))):
|
|
xs = [
|
|
torch._ops.ops.aten.slice(elem, dim, ind, ind + 1, 1) for elem in inp_leaves
|
|
]
|
|
|
|
carry, y = combine_fn(
|
|
pytree.tree_unflatten(carry, carry_spec),
|
|
pytree.tree_unflatten(xs, inp_spec),
|
|
)
|
|
carry, _ = pytree.tree_flatten(carry)
|
|
y, _ = pytree.tree_flatten(y)
|
|
result_flat.append(y)
|
|
|
|
results = [
|
|
torch.concatenate([e[leave_ind] for e in op(result_flat)], dim)
|
|
for leave_ind in range(num_leaves)
|
|
]
|
|
return (
|
|
pytree.tree_unflatten(carry, carry_spec),
|
|
pytree.tree_unflatten(results, dummy_out_spec),
|
|
)
|
|
|
|
|
|
def compile_mode_helper(fct, compile_mode):
|
|
if compile_mode == "compile":
|
|
return torch.compile(fct, fullgraph=True, dynamic=False)
|
|
elif compile_mode == "compile_dynamic_shape":
|
|
return torch.compile(fct, fullgraph=True, dynamic=True)
|
|
elif compile_mode == "eager":
|
|
return torch.compile(fct, fullgraph=True, backend="eager")
|
|
else:
|
|
return fct
|
|
|
|
|
|
def get_scan_combine_fn(name, associative=True):
|
|
def add(x: torch.Tensor, y: torch.Tensor):
|
|
return x + y
|
|
|
|
def adds(x: torch.Tensor, y: torch.Tensor):
|
|
return x + x, y + y
|
|
|
|
def mul(x: torch.Tensor, y: torch.Tensor):
|
|
return x * y
|
|
|
|
def div(x: torch.Tensor, y: torch.Tensor):
|
|
return x / y
|
|
|
|
def s5_operator(x, y):
|
|
A_i, Bu_i = x
|
|
A_j, Bu_j = y
|
|
return A_j * A_i, A_j * Bu_i + Bu_j
|
|
|
|
def tuple_fct(x, y):
|
|
return (x[0] + y[0], x[1] * y[1])
|
|
|
|
def complex_pointwise(x, y):
|
|
return {
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
}
|
|
|
|
def non_pointwise(x: torch.Tensor, y: torch.Tensor):
|
|
W = torch.diag(torch.ones(2, device=x.device))
|
|
return x @ W + y @ W
|
|
|
|
if name == "add":
|
|
fct = add
|
|
elif name == "adds":
|
|
fct = adds
|
|
elif name == "mul":
|
|
fct = mul
|
|
elif name == "div":
|
|
fct = div
|
|
elif name == "s5_operator":
|
|
fct = s5_operator
|
|
elif name == "tuple_fct":
|
|
fct = tuple_fct
|
|
elif name == "complex_pointwise":
|
|
fct = complex_pointwise
|
|
elif name == "non_pointwise":
|
|
fct = non_pointwise
|
|
else:
|
|
raise ValueError("Combine_fn name unknown!")
|
|
|
|
if not associative:
|
|
return lambda x, y: (fct(x, y), fct(x, y))
|
|
else:
|
|
return fct
|
|
|
|
|
|
def _while_loop_tests():
|
|
def simple(x):
|
|
def cond_fn(x):
|
|
return x.sum() < 10
|
|
|
|
def body_fn(x):
|
|
return (x + 1,)
|
|
|
|
return while_loop(cond_fn, body_fn, (x,))
|
|
|
|
def simple_with_mutation(x):
|
|
def cond_fn(x):
|
|
y = x.clone().add_(1).add_(-1)
|
|
return y.sum() < 10
|
|
|
|
def body_fn(x):
|
|
y = x.clone().add_(1).add_(-1)
|
|
return (y + 1,)
|
|
|
|
return while_loop(cond_fn, body_fn, (x,))
|
|
|
|
def nested(out_iter, it, y):
|
|
def cond_fn(out_iter, it, y):
|
|
return it.sum() < 10
|
|
|
|
def body_fn(out_iter, it, y):
|
|
return (out_iter.clone(), it + y, y + 1)
|
|
|
|
def outer_cond_fn(out_iter, it, y):
|
|
return out_iter.sum() < 2
|
|
|
|
def outer_body_fn(out_iter, it, y):
|
|
out_iter, it, y = while_loop(cond_fn, body_fn, (out_iter, it, y))
|
|
return (out_iter + 1, it, y)
|
|
|
|
return while_loop(outer_cond_fn, outer_body_fn, (out_iter, it, y))
|
|
|
|
class Nested(torch.nn.Module):
|
|
def forward(self, ci, cj, a, b):
|
|
def cond_fn(i1, j1, x1, y1):
|
|
return i1 > 0
|
|
|
|
def body_fn(i1, j1, x1, y1):
|
|
def cond_fn_nested(i2, j2, x2, y2):
|
|
return j2 > 0
|
|
|
|
def body_fn_nested(i2, j2, x2, y2):
|
|
return i2.clone(), j2 - 1, x2 + 3.14, y2 - 2.71
|
|
|
|
i1, j1, x1, y1 = while_loop(
|
|
cond_fn_nested, body_fn_nested, [i1, j1, x1, y1]
|
|
)
|
|
return i1 - 1, j1.clone(), x1 * 2, y1 / 2
|
|
|
|
return while_loop(cond_fn, body_fn, (ci, cj, a, b))
|
|
|
|
class SimpleWithLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
self.dec = torch.nn.Buffer(torch.tensor(1))
|
|
|
|
def forward(self, iter, x):
|
|
def cond_fn(it, x):
|
|
return it - self.dec > 0
|
|
|
|
def body_fn(it, x):
|
|
return it - 1, self.linear(x)
|
|
|
|
return while_loop(cond_fn, body_fn, (iter, x))
|
|
|
|
class NestedWithLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.mod = SimpleWithLinear()
|
|
self.outer_linear = torch.nn.Linear(2, 2)
|
|
self.dec = torch.nn.Buffer(torch.tensor(1))
|
|
|
|
def forward(self, iter, x):
|
|
def cond_fn(it, x):
|
|
return it - self.dec > 0
|
|
|
|
def body_fn(it, x):
|
|
return it - 1, self.outer_linear(self.mod(it, x)[1])
|
|
|
|
return while_loop(cond_fn, body_fn, (iter, x))
|
|
|
|
nested2 = Nested()
|
|
simple_with_linear = SimpleWithLinear()
|
|
nested_with_linear = NestedWithLinear()
|
|
|
|
x = torch.zeros(1)
|
|
y = torch.zeros(1)
|
|
z = torch.zeros(1)
|
|
return {
|
|
"simple": (simple, (x,)),
|
|
"nested": (nested, (x, y, z)),
|
|
"nested2": (
|
|
nested2,
|
|
(torch.tensor(2), torch.tensor(2), torch.ones(2, 2), torch.ones(2, 2)),
|
|
),
|
|
"simple_with_mutation": (simple_with_mutation, (x,)),
|
|
"simple_with_linear": (
|
|
simple_with_linear,
|
|
(torch.tensor(3), torch.randn(2, 2)),
|
|
),
|
|
"nested_with_linear": (
|
|
nested_with_linear,
|
|
(torch.tensor(3), torch.randn(2, 2)),
|
|
),
|
|
}
|
|
|
|
|
|
WHILE_LOOP_TESTS = _while_loop_tests()
|
|
|
|
|
|
def collect_meta_for_filtered_nodes(
|
|
gm: torch.fx.GraphModule, node_names, meta_field_name
|
|
):
|
|
ret = []
|
|
for mod in gm.modules():
|
|
for node in mod.graph.nodes:
|
|
if node.name in node_names:
|
|
for field_name in meta_field_name:
|
|
ret.append(node.meta.get(field_name))
|
|
return ret
|
|
|
|
|
|
def reduce_func(*operands):
|
|
acc = 0
|
|
for operand in operands:
|
|
acc += operand
|
|
return acc
|
|
|
|
|
|
class ReduceObj:
|
|
def __call__(self, *operands):
|
|
return reduce_func(*operands)
|
|
|
|
|
|
class ReduceMod(torch.nn.Module):
|
|
def _reduce(self, *operands):
|
|
return reduce_func(*operands)
|
|
|
|
def forward(self, *operands):
|
|
return self._reduce(*operands)
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
|
|
@skipIfNoDynamoSupport
|
|
class TestControlFlow(TestCase):
|
|
def setUp(self):
|
|
torch._dynamo.reset()
|
|
super().setUp()
|
|
|
|
def test_cond_no_trace(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
x = torch.randn(4)
|
|
result = cond(False, true_fn, false_fn, [x])
|
|
self.assertEqual(result, torch.cos(x))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_cond_gpu(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
x = torch.randn(4, device="cuda")
|
|
pred = torch.tensor(False, device="cuda")
|
|
result = cond(pred, true_fn, false_fn, [x])
|
|
self.assertEqual(result, torch.cos(x))
|
|
|
|
def test_cond_autograd_simple(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
x = torch.randn(4, requires_grad=True)
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(pred, x)
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_autograd_complex(self):
|
|
def true_fn(x):
|
|
return torch.abs((x**2).sin())
|
|
|
|
def false_fn(x):
|
|
return (x + 42).cos()
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
x = torch.randn(4, requires_grad=True)
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_nested(self):
|
|
class Nested(torch.nn.Module):
|
|
def forward(self, p0, p1, p2, a, b, c):
|
|
def true_fn(x0, y0, z0):
|
|
def true_true_fn(x1, y1, z1):
|
|
return (x1 - y1 * z1) * 3.14
|
|
|
|
def true_false_fn(x1, y1, z1):
|
|
def true_false_true_fn(x2, y2, z2):
|
|
return (x2 * y2 * z2) / 2.71
|
|
|
|
def true_false_false_fn(x2, y2, z2):
|
|
return (x2 + y2 + z2) * 1.23
|
|
|
|
return torch.cond(
|
|
p2, true_false_true_fn, true_false_false_fn, [x1, y1, z1]
|
|
)
|
|
|
|
return torch.cond(p1, true_true_fn, true_false_fn, [x0, y0, z0])
|
|
|
|
def false_fn(x0, y0, z0):
|
|
def false_true_fn(x1, y1, z1):
|
|
def false_true_true_fn(x2, y2, z2):
|
|
return (x2 - y2 - z2) + 1.23
|
|
|
|
def false_true_false_fn(x2, y2, z2):
|
|
return (x2 / y2 / z2) - 3.14
|
|
|
|
return torch.cond(
|
|
p2, false_true_true_fn, false_true_false_fn, [x1, y1, z1]
|
|
)
|
|
|
|
def false_false_fn(x1, y1, z1):
|
|
return (x1 - y1 * z1) / 2.71
|
|
|
|
return torch.cond(p1, false_true_fn, false_false_fn, [x0, y0, z0])
|
|
|
|
return torch.cond(p0, true_fn, false_fn, [a, b, c])
|
|
|
|
nn_module = Nested()
|
|
|
|
def true_fn(x):
|
|
return nn_module(
|
|
torch.tensor(False), torch.tensor(True), torch.tensor(False), x, x, x
|
|
)
|
|
|
|
def false_fn(x):
|
|
return nn_module(
|
|
torch.tensor(True), torch.tensor(False), torch.tensor(True), x, x, x
|
|
)
|
|
|
|
x = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_mixed_require_grad(self):
|
|
def true_fn(x, y, z):
|
|
return x * y * z
|
|
|
|
def false_fn(x, y, z):
|
|
return x + y + z
|
|
|
|
x = torch.randn(4, requires_grad=True)
|
|
y = torch.randn(4, requires_grad=False)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, (x, y, x))
|
|
self.assertEqual(result, fn(x, y, x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x, y, x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x, y, z):
|
|
result = cond(pred, true_fn, false_fn, (x, y, z))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(pred, x, y, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1, y_1, z_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (z_1, y_1)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, z_1, y_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = z_1 = y_1 = None
|
|
getitem_1 = cond_1[0]
|
|
getitem_2 = cond_1[1]; cond_1 = getitem_2 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_grad_through_cond(self):
|
|
nn_module = torch.nn.Linear(4, 4)
|
|
|
|
def true_fn(x):
|
|
return nn_module(x)
|
|
|
|
def false_fn(X):
|
|
return x * nn_module(x)
|
|
|
|
x = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (nn_module.weight,), grad_out)
|
|
expected_grads = torch.autograd.grad(
|
|
fn(
|
|
x,
|
|
),
|
|
(nn_module.weight,),
|
|
grad_out,
|
|
)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (nn_module.weight,), grad_out)
|
|
|
|
# need to set _allow_non_fake_inputs = True because model parameters don't
|
|
# get fakified.
|
|
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_param_constant0 = self._param_constant0
|
|
_param_constant1 = self._param_constant1
|
|
_tensor_constant0 = self._tensor_constant0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_param_constant0, _param_constant1, x_1, _tensor_constant0)); true_graph_0 = false_graph_0 = _param_constant0 = _param_constant1 = _tensor_constant0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
_param_constant0_1 = self._param_constant0
|
|
_param_constant1_1 = self._param_constant1
|
|
_tensor_constant0_1 = self._tensor_constant0
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, _param_constant0_1, _param_constant1_1, x_1, _tensor_constant0_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = _param_constant0_1 = _param_constant1_1 = x_1 = _tensor_constant0_1 = None
|
|
getitem_1 = cond_1[0]; getitem_1 = None
|
|
getitem_2 = cond_1[1]
|
|
getitem_3 = cond_1[2]; getitem_3 = None
|
|
getitem_4 = cond_1[3]; cond_1 = getitem_4 = None
|
|
return (getitem_2,)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_in_forloop(self):
|
|
def for_loop_fake(x):
|
|
for i in range(3):
|
|
x = x * x + 1
|
|
return x
|
|
|
|
def for_loop_test(x):
|
|
for i in range(3):
|
|
pred = i < 3
|
|
|
|
def true_fn(x):
|
|
return x * x + 1
|
|
|
|
def false_fn(x):
|
|
return x
|
|
|
|
x = cond(pred, true_fn, false_fn, (x,))
|
|
|
|
return x
|
|
|
|
x = torch.ones(4, requires_grad=True)
|
|
x_new = for_loop_test(x)
|
|
x_exp = for_loop_fake(x)
|
|
|
|
self.assertEqual(x_new, x_exp)
|
|
|
|
grad_out = torch.ones_like(x_new)
|
|
grads = torch.autograd.grad(x_new, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(x_exp, (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(x):
|
|
x_new = for_loop_test(x)
|
|
grad_out = torch.ones_like(x_new)
|
|
return torch.autograd.grad(x_new, (x,), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
mul = torch.ops.aten.mul.Tensor(x_1, x_1)
|
|
add = torch.ops.aten.add.Tensor(mul, 1); mul = None
|
|
mul_1 = torch.ops.aten.mul.Tensor(add, add)
|
|
add_1 = torch.ops.aten.add.Tensor(mul_1, 1); mul_1 = None
|
|
mul_2 = torch.ops.aten.mul.Tensor(add_1, add_1)
|
|
add_2 = torch.ops.aten.add.Tensor(mul_2, 1); mul_2 = None
|
|
ones_like = torch.ops.aten.ones_like.default(add_2, pin_memory = False); add_2 = None
|
|
mul_3 = torch.ops.aten.mul.Tensor(ones_like, add_1)
|
|
mul_4 = torch.ops.aten.mul.Tensor(ones_like, add_1); ones_like = add_1 = None
|
|
add_3 = torch.ops.aten.add.Tensor(mul_4, mul_3); mul_4 = mul_3 = None
|
|
mul_5 = torch.ops.aten.mul.Tensor(add_3, add)
|
|
mul_6 = torch.ops.aten.mul.Tensor(add_3, add); add_3 = add = None
|
|
add_4 = torch.ops.aten.add.Tensor(mul_6, mul_5); mul_6 = mul_5 = None
|
|
mul_7 = torch.ops.aten.mul.Tensor(add_4, x_1)
|
|
mul_8 = torch.ops.aten.mul.Tensor(add_4, x_1); add_4 = x_1 = None
|
|
add_5 = torch.ops.aten.add.Tensor(mul_8, mul_7); mul_8 = mul_7 = None
|
|
return (add_5,)""", # noqa: B950
|
|
)
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_pytree_not_all_inputs_used(self):
|
|
def true_fn(x):
|
|
return x["t"][0] + x["t"][1]["b"]
|
|
|
|
def false_fn(x):
|
|
return x["t"][0] * (x["t"][2][0] / x["t"][1]["b"])
|
|
|
|
a = torch.randn(4, requires_grad=True)
|
|
b = torch.randn(4, requires_grad=True)
|
|
c = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
self.assertEqual(result, fn({"t": [a, {"b": b}, (c,)]}))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
if pred:
|
|
with self.assertRaisesRegex(Exception, r"."):
|
|
grads = torch.autograd.grad(result, (a, b, c), grad_out)
|
|
expected_grads = torch.autograd.grad(
|
|
fn({"t": [a, {"b": b}, (c,)]}), (a, b, c), grad_out
|
|
)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, a, b, c):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (a, b), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(
|
|
pred, a, b, c
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, a_1, b_1, c_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (a_1, b_1, c_1)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, a_1, b_1, c_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = a_1 = b_1 = c_1 = None
|
|
getitem_1 = cond_1[0]
|
|
getitem_2 = cond_1[1]
|
|
getitem_3 = cond_1[2]; cond_1 = getitem_3 = None
|
|
return (getitem_1, getitem_2)""", # noqa: B950
|
|
)
|
|
# Forward
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (add,)""",
|
|
)
|
|
# Backward
|
|
self.assertExpectedInline(
|
|
gm.true_graph_1.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
add = torch.ops.aten.add.Tensor(arg1_1, arg2_1); arg1_1 = arg2_1 = add = None
|
|
clone = torch.ops.aten.clone.default(arg0_1)
|
|
clone_1 = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
return [clone, clone_1, None]""",
|
|
)
|
|
|
|
def test_cond_autograd_pytree_input(self):
|
|
def true_fn(x):
|
|
return x["t"][0] + x["t"][1]["b"] * x["t"][2][0]
|
|
|
|
def false_fn(x):
|
|
return x["t"][0] * (x["t"][2][0] / x["t"][1]["b"])
|
|
|
|
a = torch.randn(4, requires_grad=True)
|
|
b = torch.randn(4, requires_grad=True)
|
|
c = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
self.assertEqual(result, fn({"t": [a, {"b": b}, (c,)]}))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (a, b), grad_out)
|
|
expected_grads = torch.autograd.grad(
|
|
fn({"t": [a, {"b": b}, (c,)]}), (a, b), grad_out
|
|
)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (a, b), grad_out)
|
|
|
|
# need to set _allow_non_fake_inputs = True because model parameters don't
|
|
# get fakified.
|
|
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(pred)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_tensor_constant0 = self._tensor_constant0
|
|
_tensor_constant1 = self._tensor_constant1
|
|
_tensor_constant2 = self._tensor_constant2
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_tensor_constant0, _tensor_constant1, _tensor_constant2)); true_graph_0 = false_graph_0 = _tensor_constant0 = _tensor_constant1 = _tensor_constant2 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
_tensor_constant0_1 = self._tensor_constant0
|
|
_tensor_constant1_1 = self._tensor_constant1
|
|
_tensor_constant2_1 = self._tensor_constant2
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, _tensor_constant0_1, _tensor_constant1_1, _tensor_constant2_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = _tensor_constant0_1 = _tensor_constant1_1 = _tensor_constant2_1 = None
|
|
getitem_1 = cond_1[0]
|
|
getitem_2 = cond_1[1]
|
|
getitem_3 = cond_1[2]; cond_1 = getitem_3 = None
|
|
return (getitem_1, getitem_2)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_autograd_different_pytree_output(self):
|
|
def true_fn(x):
|
|
return x["t"][0], {"r": x["t"][2][0] / x["t"][1]["b"]}, [x["t"][2][0]]
|
|
|
|
def false_fn(x):
|
|
return {"res": [x["t"][0] * x["t"][1]["b"], x["t"][2][0]]}
|
|
|
|
a = torch.randn(4, requires_grad=True)
|
|
b = torch.randn(4, requires_grad=True)
|
|
c = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_same_pytree_output(self):
|
|
def true_fn(x):
|
|
return {"res": [x["t"][0], (x["t"][2][0],)]}
|
|
|
|
def false_fn(x):
|
|
return {"res": [x["t"][1]["b"], (x["t"][2][0],)]}
|
|
|
|
a = torch.randn(4, requires_grad=True)
|
|
b = torch.randn(4, requires_grad=True)
|
|
c = torch.randn(4, requires_grad=True)
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
result_exp = fn({"t": [a, {"b": b}, (c,)]})
|
|
self.assertEqual(result, result_exp)
|
|
|
|
result_flat, _ = pytree.tree_flatten(result)
|
|
result_exp_flat, _ = pytree.tree_flatten(result_exp)
|
|
|
|
grad_out = [torch.ones_like(g) for g in result_flat]
|
|
expected_grads = torch.autograd.grad(result_exp_flat, (c,), grad_out)
|
|
grads = torch.autograd.grad(result_flat, (c,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred):
|
|
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
|
|
return result
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(pred)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_tensor_constant0 = self._tensor_constant0
|
|
_tensor_constant1 = self._tensor_constant1
|
|
_tensor_constant2 = self._tensor_constant2
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_tensor_constant0, _tensor_constant1, _tensor_constant2)); pred_1 = true_graph_0 = false_graph_0 = _tensor_constant0 = _tensor_constant1 = _tensor_constant2 = None
|
|
getitem = cond[0]
|
|
getitem_1 = cond[1]; cond = None
|
|
view = torch.ops.aten.view.default(getitem, [4]); getitem = None
|
|
view_1 = torch.ops.aten.view.default(getitem_1, [4]); getitem_1 = None
|
|
return {'res': [view, (view_1,)]}""", # noqa: B950
|
|
)
|
|
|
|
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
|
|
def test_cond_autograd_torch_nn_module(self):
|
|
nn_module_true = torch.nn.Linear(4, 4)
|
|
|
|
def true_fn(x):
|
|
return nn_module_true(torch.abs((x**2).sin()))
|
|
|
|
nn_module_false = torch.nn.GRUCell(4, 4)
|
|
|
|
def false_fn(x):
|
|
return nn_module_false((x + 42).cos())
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
x = torch.randn(4, requires_grad=True)
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f)(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_param_constant0 = self._param_constant0
|
|
_param_constant1 = self._param_constant1
|
|
_param_constant2 = self._param_constant2
|
|
_param_constant3 = self._param_constant3
|
|
_param_constant4 = self._param_constant4
|
|
_param_constant5 = self._param_constant5
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1, _param_constant0, _param_constant1, _param_constant2, _param_constant3, _param_constant4, _param_constant5)); true_graph_0 = false_graph_0 = _param_constant0 = _param_constant1 = _param_constant2 = _param_constant3 = _param_constant4 = _param_constant5 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
_param_constant0_1 = self._param_constant0
|
|
_param_constant1_1 = self._param_constant1
|
|
_param_constant2_1 = self._param_constant2
|
|
_param_constant3_1 = self._param_constant3
|
|
_param_constant4_1 = self._param_constant4
|
|
_param_constant5_1 = self._param_constant5
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1, _param_constant0_1, _param_constant1_1, _param_constant2_1, _param_constant3_1, _param_constant4_1, _param_constant5_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = _param_constant0_1 = _param_constant1_1 = _param_constant2_1 = _param_constant3_1 = _param_constant4_1 = _param_constant5_1 = None
|
|
getitem_1 = cond_1[0]
|
|
getitem_2 = cond_1[1]; getitem_2 = None
|
|
getitem_3 = cond_1[2]; getitem_3 = None
|
|
getitem_4 = cond_1[3]; getitem_4 = None
|
|
getitem_5 = cond_1[4]; getitem_5 = None
|
|
getitem_6 = cond_1[5]; getitem_6 = None
|
|
getitem_7 = cond_1[6]; cond_1 = getitem_7 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_autograd_user_nn_module(self):
|
|
class User_nn_module(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, input):
|
|
return input * input
|
|
|
|
nn_module_true = User_nn_module()
|
|
|
|
def true_fn(x):
|
|
return nn_module_true(torch.abs((x**2).sin()))
|
|
|
|
nn_module_false = torch.nn.ReLU(inplace=False)
|
|
|
|
def false_fn(x):
|
|
return nn_module_false((x + 42).cos())
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
x = torch.randn(4, requires_grad=True)
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f)(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_autograd_inner_fn(self):
|
|
def true_fn(x):
|
|
return torch.abs((x**2).sin())
|
|
|
|
def false_fn(x):
|
|
def inner_fn(x):
|
|
return x**2
|
|
|
|
return torch.abs(inner_fn(x).sin())
|
|
|
|
x = torch.randn(4, requires_grad=True)
|
|
pred = torch.tensor(False)
|
|
fn = false_fn
|
|
result_false = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result_false, fn(x))
|
|
|
|
grad_out = torch.ones_like(result_false)
|
|
grads_false = torch.autograd.grad(result_false, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads_false)
|
|
|
|
pred = torch.tensor(True)
|
|
fn = true_fn
|
|
result_true = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result_true, fn(x))
|
|
self.assertEqual(result_false, result_true)
|
|
|
|
grad_out = torch.ones_like(result_true)
|
|
grads_true = torch.autograd.grad(result_true, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads_true)
|
|
self.assertEqual(grads_false, grads_true)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f)(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_autograd_inner_tensor(self):
|
|
def true_fn(x):
|
|
return torch.abs((x**2).sin())
|
|
|
|
def false_fn(x):
|
|
y = torch.ones(4, requires_grad=False) * 42
|
|
return (x * y).cos()
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
|
|
):
|
|
x = torch.randn(4, requires_grad=True)
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(pred, x)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
return (getitem_1,)""", # noqa: B950
|
|
)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_cond_autograd_gpu(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
for pred, fn in zip(
|
|
[torch.tensor(False, device="cuda"), torch.tensor(True, device="cuda")],
|
|
[false_fn, true_fn],
|
|
):
|
|
x = torch.randn(4, requires_grad=True, device="cuda")
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
self.assertEqual(result, fn(x))
|
|
|
|
grad_out = torch.ones_like(result)
|
|
grads = torch.autograd.grad(result, (x,), grad_out)
|
|
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_map_gpu(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
xs = torch.ones(3, 2, 2, device="cuda")
|
|
y = torch.ones(2, device="cuda")
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(expected, res)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_while_loop_gpu(self):
|
|
def cond_fn(x):
|
|
return x.sum() < 10
|
|
|
|
def body_fn(x):
|
|
return (x + 1,)
|
|
|
|
x = torch.zeros(1, device="cuda")
|
|
res = while_loop(cond_fn, body_fn, (x,))
|
|
expected = _fake_while_loop(cond_fn, body_fn, (x,))
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_illegal_inputs(self):
|
|
def f(x, y):
|
|
return x[0] + x[1] + y
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Mapped xs can only consist of tensors\. Got xs \[3, tensor\(\[1\., 1\.\]\)\]\.",
|
|
):
|
|
_ = control_flow.map(f, (3, torch.ones(2)), torch.ones(2))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Leading dimensions of mapped xs cannot be 0\."
|
|
):
|
|
_ = control_flow.map(
|
|
f, (torch.ones(0, 1, 2), torch.ones(0, 1, 2)), torch.ones(2)
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Leading dimensions of mapped xs must be consistent\. "
|
|
r"Got shapes \[torch\.Size\(\[3, 4, 5\]\), torch\.Size\(\[4, 4, 5\]\)\]\.",
|
|
):
|
|
_ = control_flow.map(
|
|
f, (torch.ones(3, 4, 5), torch.ones(4, 4, 5)), torch.ones(5)
|
|
)
|
|
|
|
def test_map_illegal_outputs(self):
|
|
def f(x, y):
|
|
return x.item()
|
|
|
|
def f1(x, y):
|
|
return y.size()
|
|
|
|
def f2(x, y):
|
|
return None
|
|
|
|
x = torch.ones([3])
|
|
y = torch.ones([1, 2, 3])
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expect outputs of map only contains tensors or None\."
|
|
):
|
|
_ = control_flow.map(f, x, y)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expect outputs of map only contains tensors or None\."
|
|
):
|
|
out = control_flow.map(f1, x, y)
|
|
|
|
# return None is OK
|
|
_ = control_flow.map(f2, x, y)
|
|
|
|
def test_map_list_in_out(self):
|
|
def f(x, y):
|
|
return [[x[0][0] + y]]
|
|
|
|
xs = [[torch.ones(3, 2, 2)]]
|
|
y = torch.ones(2)
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(len(res), 1)
|
|
self.assertEqual(len(res[0]), 1)
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_dict_in_out(self):
|
|
def f(x, y):
|
|
return {"c": x["a"]["b"] + y}
|
|
|
|
xs = {"a": {"b": torch.ones(3, 2, 2)}}
|
|
y = torch.ones(2)
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(len(res), 1)
|
|
self.assertTrue("c" in res)
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_autograd_simple(self):
|
|
def f(x, y):
|
|
return x.sin().cos() * y.cos().sin()
|
|
|
|
xs = torch.ones(3, 2, 2, requires_grad=True)
|
|
y = torch.ones(2, requires_grad=True)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res)
|
|
grads = torch.autograd.grad(res, (xs, y), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res, (xs, y), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_simple_partial_grad(self):
|
|
def f(x, y):
|
|
return x.sin().cos() * y.cos().sin()
|
|
|
|
xs = torch.ones(3, 2, 2, requires_grad=True)
|
|
# Disable the gradient computation for y
|
|
y = torch.ones(2, requires_grad=False)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res)
|
|
grads = torch.autograd.grad(res, (xs,), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res, (xs,), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_no_grad_output(self):
|
|
def f(x, y):
|
|
return x[0].sin().cos() + y, y.cos().sin()
|
|
|
|
xs = [torch.ones(3, 2, 2, requires_grad=True), torch.ones(3, 3)]
|
|
# Disable the gradient computation for y
|
|
y = torch.ones(2, requires_grad=False)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res[0])
|
|
grads = torch.autograd.grad(res[0], (xs[0],), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res[0], (xs[0],), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_nested_list(self):
|
|
import torch.utils._pytree as pytree
|
|
|
|
def f(x, y):
|
|
a, b = x
|
|
c, d = a
|
|
return [[b.sin() * c.cos()], d.sin() * y.cos()]
|
|
|
|
def fwbw(map_op, f, x, y):
|
|
z = map_op(f, x, y)
|
|
flat_x = pytree.tree_leaves(x)
|
|
flat_z = pytree.tree_leaves(z)
|
|
grads = torch.autograd.grad(
|
|
flat_z, flat_x, [torch.ones_like(z) for z in flat_z]
|
|
)
|
|
return z, grads
|
|
|
|
x = [
|
|
[
|
|
torch.randn(3, 2, 2, requires_grad=True),
|
|
torch.randn(3, 2, 1, requires_grad=True),
|
|
],
|
|
torch.ones(3, 1, 2, requires_grad=True),
|
|
]
|
|
y = torch.ones(1, requires_grad=True)
|
|
true_outs = fwbw(control_flow.map, f, x, y)
|
|
fake_outs = fwbw(_fake_map, f, x, y)
|
|
self.assertEqual(true_outs, fake_outs)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "compile", "compile_dynamic_shape"])
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_compile(
|
|
self, combine_mode, reverse, compile_mode, device
|
|
):
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
|
|
scan_fct = compile_mode_helper(associative_scan, compile_mode)
|
|
|
|
for op, op_pt in [
|
|
(get_scan_combine_fn("add", True), torch.cumsum),
|
|
(get_scan_combine_fn("mul", True), torch.cumprod),
|
|
]:
|
|
result = scan_fct(op, x, 0, reverse=reverse, combine_mode=combine_mode)
|
|
result_exp = _fake_associative_scan(op, xs=x, dim=0, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
if not reverse:
|
|
result_exp_PT = op_pt(x, 0)
|
|
self.assertEqual(result, result_exp_PT)
|
|
|
|
# Jax Examples
|
|
x = torch.arange(0, 4, device=device)
|
|
cumsum1 = scan_fct(
|
|
get_scan_combine_fn("add", True),
|
|
x,
|
|
0,
|
|
reverse=reverse,
|
|
combine_mode=combine_mode,
|
|
)
|
|
cumsum_exp = _fake_associative_scan(
|
|
get_scan_combine_fn("add", True), x, 0, reverse=reverse
|
|
)
|
|
if not reverse:
|
|
self.assertEqual(
|
|
cumsum1, torch.tensor([0.0, 1.0, 3.0, 6.0], dtype=torch.int64)
|
|
)
|
|
else:
|
|
self.assertEqual(
|
|
cumsum1, torch.tensor([6.0, 6.0, 5.0, 3.0], dtype=torch.int64)
|
|
)
|
|
self.assertEqual(cumsum1, cumsum_exp)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_compile(self, reverse, compile_mode, device):
|
|
def add2(x: torch.Tensor, y: torch.Tensor):
|
|
return x * y, x + y
|
|
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
for op, op_pt, init in [
|
|
(
|
|
get_scan_combine_fn("add", False),
|
|
torch.cumsum,
|
|
torch.zeros(1, 10, 2, device=device),
|
|
),
|
|
(
|
|
get_scan_combine_fn("mul", False),
|
|
torch.cumprod,
|
|
torch.ones(1, 10, 2, device=device),
|
|
),
|
|
]:
|
|
result = scan_fct(op, init, x, dim=0, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
if not reverse:
|
|
result_exp_PT = op_pt(x, 0)
|
|
self.assertEqual(result[1], result_exp_PT)
|
|
|
|
# Jax Examples
|
|
x = torch.arange(0, 4, device=device, dtype=torch.int64)
|
|
init = torch.zeros(1, device=device, dtype=torch.int64)
|
|
cumsum1 = scan_fct(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
cumsum_exp = _fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init,
|
|
xs=x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
if not reverse:
|
|
self.assertEqual(
|
|
cumsum1[1], torch.tensor([0.0, 1.0, 3.0, 6.0], dtype=torch.int64)
|
|
)
|
|
self.assertEqual(cumsum1[0], torch.tensor([6.0], dtype=torch.int64))
|
|
else:
|
|
self.assertEqual(
|
|
cumsum1[1], torch.tensor([6.0, 6.0, 5.0, 3.0], dtype=torch.int64)
|
|
)
|
|
self.assertEqual(cumsum1[0], torch.tensor([6.0], dtype=torch.int64))
|
|
self.assertEqual(cumsum1, cumsum_exp)
|
|
|
|
# Different carry computation as output computation
|
|
x = torch.arange(1, 5, device=device, dtype=torch.int64)
|
|
init = torch.ones(1, device=device, dtype=torch.int64)
|
|
result = scan_fct(add2, init, x, dim=0, reverse=reverse)
|
|
result_exp = _fake_scan(add2, init=init, xs=x, dim=0, reverse=reverse)
|
|
if not reverse:
|
|
self.assertEqual(
|
|
result[1], torch.tensor([2.0, 3.0, 5.0, 10.0], dtype=torch.int64)
|
|
)
|
|
self.assertEqual(result[0], torch.tensor([24.0], dtype=torch.int64))
|
|
else:
|
|
self.assertEqual(
|
|
result[1], torch.tensor([25.0, 14.0, 7.0, 5.0], dtype=torch.int64)
|
|
)
|
|
self.assertEqual(result[0], torch.tensor([24.0], dtype=torch.int64))
|
|
self.assertEqual(result, result_exp)
|
|
|
|
# Non associative operation
|
|
x = torch.arange(0, 5, device=device, dtype=torch.float32)
|
|
init = torch.ones(1, device=device, dtype=torch.float32)
|
|
result = scan_fct(
|
|
get_scan_combine_fn("div", False),
|
|
init,
|
|
x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
result_exp = _fake_scan(
|
|
get_scan_combine_fn("div", False),
|
|
init=init,
|
|
xs=x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(result, result_exp)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
@parametrize(
|
|
"dtype",
|
|
[
|
|
torch.float16,
|
|
torch.float32,
|
|
torch.int32,
|
|
torch.int64,
|
|
torch.complex64,
|
|
],
|
|
)
|
|
def test_scan_dtype(self, reverse, compile_mode, device, dtype):
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Check all outputs and carries on the correct device and with torch.float32
|
|
x = torch.randn(3, 10, 2, device=device).to(dtype=dtype)
|
|
op, init = (
|
|
get_scan_combine_fn("adds"),
|
|
torch.zeros(1, 10, 2, device=device, dtype=dtype),
|
|
)
|
|
result = scan_fct(op, init, x, dim=0, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
self.assertEqual(
|
|
[[r.device.type for r in res] for res in result],
|
|
[[device.type for _ in res] for res in result],
|
|
)
|
|
self.assertEqual(
|
|
[[r.dtype for r in res] for res in result],
|
|
[[dtype for _ in res] for res in result],
|
|
)
|
|
|
|
# Check all outputs and carries on the correct device and
|
|
# carry.dtype torch.float32 and output.dtype torch.float16
|
|
x = torch.randn(3, 10, 2, device=device).to(dtype=dtype)
|
|
op, init = (
|
|
get_scan_combine_fn("adds"),
|
|
torch.zeros(1, 10, 2, device=device, dtype=torch.float32),
|
|
)
|
|
result = scan_fct(op, init, x, dim=0, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
self.assertEqual(
|
|
[[r.dtype for r in res] for res in result],
|
|
[
|
|
[torch.float32 for _ in range(len(result[0]))],
|
|
[dtype for _ in range(len(result[1]))],
|
|
],
|
|
)
|
|
|
|
# Check all outputs and carries on the correct device and
|
|
# carry.dtype torch.int64 and output.dtype torch.float32
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
op, init = (
|
|
get_scan_combine_fn("adds"),
|
|
torch.zeros(1, 10, 2, device=device, dtype=dtype),
|
|
)
|
|
result = scan_fct(op, init, x, dim=0, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
self.assertEqual(
|
|
[[r.dtype for r in res] for res in result],
|
|
[
|
|
[dtype for _ in range(len(result[0]))],
|
|
[torch.float32 for _ in range(len(result[1]))],
|
|
],
|
|
)
|
|
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_dim(self, combine_mode, reverse, device):
|
|
import random
|
|
|
|
num_dims = [random.randint(2, 5) for _ in range(10)]
|
|
for num_dim in num_dims:
|
|
shapes = [random.randint(1, 10) for _ in range(num_dim)]
|
|
rnd_scan_dim = random.randint(0, num_dim - 1)
|
|
x = torch.randn(*shapes, device=device)
|
|
|
|
for op, op_pt in [
|
|
(get_scan_combine_fn("add", True), torch.cumsum),
|
|
(get_scan_combine_fn("mul", True), torch.cumprod),
|
|
]:
|
|
result = associative_scan(
|
|
op, x, rnd_scan_dim, reverse=reverse, combine_mode=combine_mode
|
|
)
|
|
result_exp = _fake_associative_scan(
|
|
op, x, rnd_scan_dim, reverse=reverse
|
|
)
|
|
self.assertEqual(result, result_exp)
|
|
if not reverse:
|
|
result_exp_PT = op_pt(x, rnd_scan_dim)
|
|
self.assertEqual(result, result_exp_PT)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_dim(self, reverse, device):
|
|
import random
|
|
|
|
num_dims = [random.randint(2, 5) for _ in range(10)]
|
|
for num_dim in num_dims:
|
|
shapes = [random.randint(1, 10) for _ in range(num_dim)]
|
|
rnd_scan_dim = random.randint(0, num_dim - 1)
|
|
x = torch.randn(*shapes, device=device)
|
|
init_shapes = shapes
|
|
init_shapes[rnd_scan_dim] = 1
|
|
|
|
for op, op_pt, init in [
|
|
(
|
|
get_scan_combine_fn("add", False),
|
|
torch.cumsum,
|
|
torch.zeros(*init_shapes, device=device),
|
|
),
|
|
(
|
|
get_scan_combine_fn("mul", False),
|
|
torch.cumprod,
|
|
torch.ones(*init_shapes, device=device),
|
|
),
|
|
]:
|
|
result = scan(op, init, x, dim=rnd_scan_dim, reverse=reverse)
|
|
result_exp = _fake_scan(
|
|
op, init=init, xs=x, dim=rnd_scan_dim, reverse=reverse
|
|
)
|
|
self.assertEqual(result, result_exp)
|
|
if not reverse:
|
|
result_exp_PT = op_pt(x, rnd_scan_dim)
|
|
self.assertEqual(result[1], result_exp_PT)
|
|
|
|
@skipIfRocm(msg="Unsupported on ROCM yet")
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_binary_operator(self, combine_mode, reverse, device):
|
|
state_dim = 20
|
|
timesteps = 10
|
|
projected_inputs = torch.randn(
|
|
timesteps, state_dim, requires_grad=True, device=device
|
|
)
|
|
A = torch.randn(state_dim, requires_grad=True, device=device)
|
|
elements = (A.repeat((timesteps, 1)), projected_inputs)
|
|
|
|
result1 = associative_scan(
|
|
get_scan_combine_fn("s5_operator", True),
|
|
elements,
|
|
0,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("s5_operator", True), elements, 0, reverse=reverse
|
|
)
|
|
self.assertEqual(
|
|
result1,
|
|
expected_result,
|
|
)
|
|
self.assertEqual([r.device.type for r in result1], [device.type] * len(result1))
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_binary_operator(self, reverse, device):
|
|
state_dim = 20
|
|
timesteps = 10
|
|
projected_inputs = torch.randn(
|
|
timesteps, state_dim, requires_grad=True, device=device
|
|
)
|
|
A = torch.randn(state_dim, requires_grad=True, device=device)
|
|
elements = (A.repeat((timesteps, 1)), projected_inputs)
|
|
init = tuple(
|
|
[torch.ones_like(torch._ops.ops.aten.slice(elements[0], 0, 0, 1, 1))]
|
|
+ [
|
|
torch.zeros_like(
|
|
torch._ops.ops.aten.slice(projected_inputs, 0, 0, 1, 1)
|
|
)
|
|
]
|
|
)
|
|
|
|
result = scan(
|
|
get_scan_combine_fn("s5_operator", False),
|
|
init,
|
|
elements,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("s5_operator", False),
|
|
init=init,
|
|
xs=elements,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
@skipIfRocm(msg="Unsupported on ROCM yet")
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_tuple(self, combine_mode, reverse, device):
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
inp = (x, y)
|
|
|
|
result1 = associative_scan(
|
|
get_scan_combine_fn("tuple_fct", True),
|
|
inp,
|
|
0,
|
|
reverse=reverse,
|
|
combine_mode=combine_mode,
|
|
)
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("tuple_fct", True), inp, 0, reverse=reverse
|
|
)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
@skipIfRocm(msg="Unsupported on ROCM yet")
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_tuple(self, reverse, device):
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
inp = (x, y)
|
|
init = tuple(torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp)
|
|
|
|
result_same = scan(
|
|
get_scan_combine_fn("tuple_fct", False),
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("tuple_fct", False),
|
|
init=init,
|
|
xs=inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(result_same, expected_result)
|
|
|
|
def fct_different_output_tuple(x, y):
|
|
return ((x[0] + y[0], x[1] * y[1]), (x[1] * y[1]))
|
|
|
|
inp = (x, y)
|
|
init = tuple(torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp)
|
|
|
|
result_diff = scan(
|
|
fct_different_output_tuple, init, inp, dim=0, reverse=reverse
|
|
)
|
|
expected_result = _fake_scan(
|
|
fct_different_output_tuple, init=init, xs=inp, dim=0, reverse=reverse
|
|
)
|
|
self.assertEqual(result_diff, expected_result)
|
|
self.assertEqual(result_diff[1], result_same[1][1])
|
|
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_associative_scan_wrong_pytree(self, device):
|
|
def fct_wrong_pytree(x, y):
|
|
return {
|
|
"i": x["i"] * y["j"][0][0],
|
|
"k": 0.0,
|
|
"j": ([x["j"][1][0]["o"]], [{"o": torch.sin(x["i"])}]),
|
|
}
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
inp = {"i": x, "j": ([y], [{"o": z}])}
|
|
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError,
|
|
# r"The number of leaves of the pytree of the output of the operator
|
|
# needs to match the lenght of the pytree of the input",
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result = associative_scan(fct_wrong_pytree, inp, 0, combine_mode="generic")
|
|
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_complex_pytree(self, combine_mode, reverse, device):
|
|
def fct_pointwise(x, y):
|
|
return {
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
}
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
inp = {"i": x, "j": ([y], [{"o": z}])}
|
|
|
|
result = associative_scan(
|
|
get_scan_combine_fn("complex_pointwise", True),
|
|
inp,
|
|
0,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("complex_pointwise", True), inp, 0, reverse=reverse
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
@requires_cuda
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_wrong_pytree(self, device):
|
|
# Init and input have same pytree
|
|
def fct_wrong_pytree(x, y):
|
|
return (
|
|
{
|
|
"i": x["i"] * y["j"][0][0],
|
|
"k": 0.0,
|
|
"j": ([x["j"][1][0]["o"]], [{"o": torch.sin(x["i"])}]),
|
|
},
|
|
{
|
|
"i": x["i"] * y["j"][0][0],
|
|
"k": 0.0,
|
|
"j": ([x["j"][1][0]["o"]], [{"o": torch.sin(x["i"])}]),
|
|
},
|
|
)
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
inp = {"i": x, "j": ([y], [{"o": z}])}
|
|
inp_flat, inp_spec = pytree.tree_flatten(inp)
|
|
init_flat = [torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp_flat]
|
|
init = pytree.tree_unflatten(init_flat, inp_spec)
|
|
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError,
|
|
# r"The number of leaves of the pytree of the new carry produced by
|
|
# the operator needs to match the length of the pytree of the init",
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result = scan(fct_wrong_pytree, init, inp, dim=0)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_complex_pytree(self, reverse, device):
|
|
# Init and input have same pytree
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
inp = {"i": x, "j": ([y], [{"o": z}])}
|
|
inp_flat, inp_spec = pytree.tree_flatten(inp)
|
|
init_flat = [torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp_flat]
|
|
init = pytree.tree_unflatten(init_flat, inp_spec)
|
|
|
|
result = scan(
|
|
get_scan_combine_fn("complex_pointwise", False),
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("complex_pointwise", False),
|
|
init=init,
|
|
xs=inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("compile_mode", ["none", "compile", "compile_dynamic_shape"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_downstream_scan_matmul(
|
|
self, combine_mode, compile_mode, reverse, device
|
|
):
|
|
# Chain with matmul
|
|
def chain_fct(inp):
|
|
W = torch.ones(2, 5, device=device)
|
|
o = associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
inp,
|
|
1,
|
|
reverse=reverse,
|
|
combine_mode=combine_mode,
|
|
)
|
|
return o @ W
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct, compile_mode)
|
|
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("add", True), inp, 1, reverse=reverse
|
|
) @ torch.ones(2, 5, device=device)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("compile_mode", ["none", "compile", "compile_dynamic_shape"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_downstream_scan_scan(
|
|
self, combine_mode, compile_mode, reverse, device
|
|
):
|
|
# Chain with scan
|
|
def chain_fct_same_dim(inp):
|
|
o1 = associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
inp,
|
|
1,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
o2 = associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
o1,
|
|
1,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
return o2
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct_same_dim, compile_mode)
|
|
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
_fake_associative_scan(
|
|
get_scan_combine_fn("add", True), inp, 1, reverse=reverse
|
|
),
|
|
1,
|
|
reverse=reverse,
|
|
)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("combine_mode", ["pointwise", "generic"])
|
|
@parametrize("compile_mode", ["none", "compile", "compile_dynamic_shape"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of combine_mode=pointwise and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (
|
|
params["combine_mode"] == "pointwise"
|
|
and params["device"] == torch.device("cpu")
|
|
),
|
|
)
|
|
def test_associative_scan_downstream_scan_scan_different_dim(
|
|
self, combine_mode, compile_mode, reverse, device
|
|
):
|
|
# Chain with scan on different dim
|
|
def chain_fct_different_dim(inp):
|
|
o1 = associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
inp,
|
|
1,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
o2 = associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
o1,
|
|
0,
|
|
combine_mode=combine_mode,
|
|
reverse=reverse,
|
|
)
|
|
return o2
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct_different_dim, compile_mode)
|
|
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
expected_result = _fake_associative_scan(
|
|
get_scan_combine_fn("add", True),
|
|
_fake_associative_scan(
|
|
get_scan_combine_fn("add", True), inp, 1, reverse=reverse
|
|
),
|
|
0,
|
|
reverse=reverse,
|
|
)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@requires_cuda
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_downstream_scan_matmul(self, compile_mode, reverse, device):
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
|
|
for ind in range(2):
|
|
# Chain with matmul
|
|
def chain_fct(inp):
|
|
W = torch.ones(2, 5, device=device)
|
|
o = scan(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
return o[ind] @ W
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct, compile_mode)
|
|
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init,
|
|
xs=inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)[ind] @ torch.ones(2, 5, device=device)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@requires_cuda
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_downstream_scan_scan(self, compile_mode, reverse, device):
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
|
|
# Chain with scan
|
|
def chain_fct_same_dim(inp):
|
|
o1 = scan(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
o2 = scan(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
o1[1],
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
return o2
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct_same_dim, compile_mode)
|
|
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init,
|
|
xs=_fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init,
|
|
xs=inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)[1],
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
# TODO: provide an implementation for all compile modes and re-enable all test
|
|
@requires_cuda
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_downstream_scan_scan_dim(self, compile_mode, reverse, device):
|
|
inp = torch.randn(3, 10, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
|
|
# Chain with scan on different dim
|
|
init2 = torch.randn(1, 10, 2, device=device)
|
|
|
|
def chain_fct_different_dim(inp):
|
|
o1 = scan(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
o2 = scan(
|
|
get_scan_combine_fn("add", False),
|
|
init2,
|
|
o1[1],
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
return o2
|
|
|
|
fct_cmp = compile_mode_helper(chain_fct_different_dim, compile_mode)
|
|
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init2,
|
|
xs=_fake_scan(
|
|
get_scan_combine_fn("add", False),
|
|
init=init,
|
|
xs=inp,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)[1],
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
result1 = fct_cmp(inp)
|
|
self.assertEqual(result1, expected_result)
|
|
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of associative_scan and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (params["device"] == torch.device("cpu")),
|
|
)
|
|
def test_associative_scan_non_pointwise(self, reverse, device):
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
# Expected to fail, as the pointwise combine_mode does not allow non-pointwise operations
|
|
with self.assertRaisesRegex(
|
|
Exception,
|
|
"For combine_mode='pointwise', the combine_fn needs to be pointwise",
|
|
):
|
|
out = associative_scan(
|
|
get_scan_combine_fn("non_pointwise", True),
|
|
x,
|
|
0,
|
|
reverse=reverse,
|
|
combine_mode="pointwise",
|
|
)
|
|
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
# Skipping the combination of associative_scan and device=cpu
|
|
# as the current implementation of pointwise does only support CUDA device
|
|
@decorateIf(
|
|
unittest.skip,
|
|
lambda params: (params["device"] == torch.device("cpu")),
|
|
)
|
|
def test_associative_scan_non_pointwise_generic(self, reverse, device):
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
result_expected = _fake_associative_scan(
|
|
get_scan_combine_fn("non_pointwise", True), x, 0, reverse=reverse
|
|
)
|
|
result1 = associative_scan(
|
|
get_scan_combine_fn("non_pointwise", True),
|
|
x,
|
|
0,
|
|
reverse=reverse,
|
|
combine_mode="generic",
|
|
)
|
|
self.assertEqual(result1, result_expected)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_non_pointwise(self, reverse, device):
|
|
x = torch.randn(3, 10, 2, device=device)
|
|
init = torch.randn(1, 10, 2, device=device)
|
|
result_expected = _fake_scan(
|
|
get_scan_combine_fn("non_pointwise", False),
|
|
init=init,
|
|
xs=x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
|
|
out = scan(
|
|
get_scan_combine_fn("non_pointwise", False),
|
|
init,
|
|
x,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(out, result_expected)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_compile_cnt(self, reverse, device):
|
|
dim = 1
|
|
|
|
from torch._dynamo.testing import CompileCounter
|
|
|
|
# Tests rely on automatic_dynamic = True
|
|
with torch._dynamo.config.patch(automatic_dynamic_shapes=True):
|
|
cnt = CompileCounter()
|
|
x = torch.randn(3, 2, 5, device=device)
|
|
init = torch.randn(3, 1, 5, device=device)
|
|
# First compilation step
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=dim,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
x = torch.randn(3, 20, 5, device=device)
|
|
init = torch.randn(3, 1, 5, device=device)
|
|
# Recompilation due to first different size
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=dim,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
x = torch.randn(3, 40, 5, device=device)
|
|
init = torch.randn(3, 1, 5, device=device)
|
|
# No recompilation, because of dynamic shape
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=dim,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
x = torch.randn(3, 40, 5, device=device)
|
|
init = torch.randn(3, 40, 1, device=device)
|
|
# Recompilation because of dim change
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=2,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 3)
|
|
|
|
x = torch.randn(3, 40, 20, device=device)
|
|
init = torch.randn(3, 40, 1, device=device)
|
|
# Recompilation due to first different size on new dim
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=2,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 4)
|
|
|
|
x = torch.randn(3, 40, 40, device=device)
|
|
init = torch.randn(3, 40, 1, device=device)
|
|
# No recompilation, because of dynamic shape on new dim
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=2,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 4)
|
|
|
|
x = torch.randn(3, 60, 40, device=device)
|
|
init = torch.randn(3, 1, 40, device=device)
|
|
# Recompilation because of dim change
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 5)
|
|
|
|
x = torch.randn(3, 60, 40, device=device)
|
|
init = torch.randn(3, 1, 40, device=device)
|
|
# Recompilation because of reverse change
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=1,
|
|
reverse=not reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 6)
|
|
|
|
x = torch.randn(3, 60, 40, device=device)
|
|
init = torch.randn(3, 1, 40, device=device)
|
|
# No recompilation, as nothing changed
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=1,
|
|
reverse=not reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 6)
|
|
|
|
x = torch.randn(3, 120, 80, device=device)
|
|
init = torch.randn(3, 1, 80, device=device)
|
|
# No recompilation, final test
|
|
torch.compile(scan, backend=cnt)(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
x,
|
|
dim=1,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(cnt.frame_count, 6)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_scanned_0(self, reverse, compile_mode, device):
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Only init and no input
|
|
x = torch.randn(3, 1, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
dim = 1
|
|
|
|
# Scan dimension is 0
|
|
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError, "Input leaves must have a scan dimension > 0"
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result_init = scan_fct(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
inp,
|
|
dim=dim,
|
|
reverse=reverse,
|
|
)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_non_tensor(self, reverse, compile_mode, device):
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Only init and no input
|
|
x = torch.randn(3, 1, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
dim = 1
|
|
|
|
# Init is a float and not a tensor
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
init = 1.0
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError, "Init leaves must be a Tensor"
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result_init = scan_fct(
|
|
get_scan_combine_fn("add", False), init, inp, dim=dim, reverse=reverse
|
|
)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_wrong_shape(self, reverse, compile_mode, device):
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Only init and no input
|
|
x = torch.randn(3, 1, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
dim = 1
|
|
|
|
# Init wrong shape (Other dim different)
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
|
|
init = torch.tile(init, (1, 2, 1))
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError, "The size of tensor a.*"
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result_init = scan_fct(
|
|
get_scan_combine_fn("add", False),
|
|
init,
|
|
inp,
|
|
dim=dim,
|
|
reverse=reverse,
|
|
)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_wrong_pytree(self, reverse, compile_mode, device):
|
|
def add_one_carry(x: torch.Tensor, y: torch.Tensor):
|
|
return x[0], x
|
|
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Only init and no input
|
|
x = torch.randn(3, 1, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
dim = 1
|
|
|
|
# Init wrong pytree
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
init = (
|
|
torch._ops.ops.aten.slice(x, dim, 0, 1, 1),
|
|
torch._ops.ops.aten.slice(x, dim, 0, 1, 1),
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError: The number of leaves of the pytree of the new carry produced
|
|
# by the operator needs to match the length of the pytree of the init
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result_init = scan_fct(add_one_carry, init, inp, dim=dim, reverse=reverse)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("compile_mode", ["none", "eager"])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init(self, reverse, compile_mode, device):
|
|
scan_fct = compile_mode_helper(scan, compile_mode)
|
|
|
|
# Only init and no input
|
|
x = torch.randn(3, 1, 2, device=device)
|
|
init = torch.randn(3, 1, 2, device=device)
|
|
dim = 1
|
|
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
|
|
|
|
# Only init given
|
|
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
|
|
result = scan_fct(op, init, [], dim=dim, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=[], dim=dim, reverse=reverse)
|
|
result_init = scan_fct(op, init, [], dim=dim, reverse=reverse)
|
|
self.assertEqual(result, result_exp)
|
|
self.assertEqual(result_init, result_exp)
|
|
self.assertEqual(result_init[0], init)
|
|
|
|
x = torch.randn(3, 5, 2, device=device)
|
|
init = torch.randn(3, 5, 2, device=device)
|
|
dim = 0
|
|
|
|
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
|
|
# Init tensor scalar
|
|
init = torch.ones(1, device=device)
|
|
|
|
def add_scalar_carry(x: torch.Tensor, y: torch.Tensor):
|
|
return x + 1.0, x + y
|
|
|
|
result_init = scan_fct(add_scalar_carry, init, inp, dim=dim, reverse=reverse)
|
|
result_exp = _fake_scan(
|
|
add_scalar_carry, init=init, xs=inp, dim=dim, reverse=reverse
|
|
)
|
|
self.assertEqual(result_init, result_exp)
|
|
self.assertEqual(result_init[0], torch.tensor([3.0], device=device))
|
|
|
|
# Init tensor entirely different shape than inp
|
|
init = torch.randn(7, 8, device=device)
|
|
|
|
def add_scalar_carry2(x: torch.Tensor, y: torch.Tensor):
|
|
return x + 1.0, x[: y.shape[1], : y.shape[2]] + y
|
|
|
|
result_init = scan_fct(add_scalar_carry2, init, inp, dim=dim, reverse=reverse)
|
|
result_exp = _fake_scan(
|
|
add_scalar_carry2, init=init, xs=inp, dim=dim, reverse=reverse
|
|
)
|
|
self.assertEqual(result_init, result_exp)
|
|
|
|
# Init with two timestep on dim axis. Should work as y has always 1 on dim axis and
|
|
# hence automatic broadcasting should work
|
|
# I.e., the input shape is 2x5x2, but the carry at each iteration is 2x5x2,
|
|
# thus the output of each iteration is 2x5x2, which results in the total output
|
|
# to be 4x5x2
|
|
init = torch._ops.ops.aten.slice(x, dim, 0, 2, 1)
|
|
result_init = scan_fct(op, init, inp, dim=dim, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=inp, dim=dim, reverse=reverse)
|
|
self.assertEqual(result_init, result_exp)
|
|
self.assertEqual(result_init[0].shape, torch.Size([2, 5, 2]))
|
|
|
|
init = torch.tile(init, (1, 2, 1))
|
|
|
|
def add_scalar_carry_sliced_out(x: torch.Tensor, y: torch.Tensor):
|
|
return x + 1.0, x[:, :1, :] + y
|
|
|
|
result_init = scan_fct(
|
|
add_scalar_carry_sliced_out, init, inp, dim=dim, reverse=reverse
|
|
)
|
|
result_exp = _fake_scan(
|
|
add_scalar_carry_sliced_out, init=init, xs=inp, dim=dim, reverse=reverse
|
|
)
|
|
self.assertEqual(result_init, result_exp)
|
|
self.assertEqual(result_init[0].shape, torch.Size([2, 10, 2]))
|
|
self.assertEqual(result_init[1].shape, torch.Size([4, 5, 2]))
|
|
|
|
# Correct case
|
|
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
dim = 1
|
|
|
|
if reverse:
|
|
init = torch.zeros_like(torch._ops.ops.aten.slice(x, dim, -1, None, 1))
|
|
inp = torch._ops.ops.aten.slice(x, dim, 0, -1, 1)
|
|
else:
|
|
init = torch.zeros_like(torch._ops.ops.aten.slice(x, dim, 0, 1, 1))
|
|
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
|
|
|
|
result = scan_fct(op, init, x, dim=dim, reverse=reverse)
|
|
result_exp = _fake_scan(op, init=init, xs=x, dim=dim, reverse=reverse)
|
|
|
|
self.assertEqual(result, result_exp)
|
|
if not reverse:
|
|
result_exp_PT = op_pt(x, dim)
|
|
self.assertEqual(result[1], result_exp_PT)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_carry_wrong_pytree(self, reverse, device):
|
|
def fct_pointwise_carry_wrong_pytree(x, y):
|
|
return (
|
|
(
|
|
x["i"],
|
|
{
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
),
|
|
{
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
)
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
inp = {"i": x, "j": ([y], [{"o": z}])}
|
|
inp_flat, inp_spec = pytree.tree_flatten(inp)
|
|
init_flat = [torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp_flat]
|
|
init = pytree.tree_unflatten(init_flat, inp_spec)
|
|
|
|
# Wrong pytree of the carry produced by the operation
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError: The number of leaves of the pytree of the new carry
|
|
# produced by the operator needs to match the length of the pytree of the init
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
result = scan(
|
|
fct_pointwise_carry_wrong_pytree,
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_wrong_pytree_complex(self, reverse, device):
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
|
|
# Wrong pytree fed to the function
|
|
init = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, 0, 1, 1),
|
|
"j": (
|
|
{"a": torch._ops.ops.aten.slice(x, 0, 0, 1, 1)},
|
|
[torch._ops.ops.aten.slice(y, 0, 0, 1, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, 0, 1, 1)}],
|
|
),
|
|
}
|
|
inp = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, 0, None, 1),
|
|
"j": (
|
|
[torch._ops.ops.aten.slice(y, 0, 0, None, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, 0, None, 1)}],
|
|
),
|
|
}
|
|
with self.assertRaisesRegex(
|
|
Exception,
|
|
".*",
|
|
):
|
|
result = scan(
|
|
get_scan_combine_fn("complex_pointwise", False),
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
|
|
@requires_cuda
|
|
@parametrize("reverse", [False, True])
|
|
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
|
|
def test_scan_init_pytree_complex(self, reverse, device):
|
|
def fct_pointwise_different_output(x, y):
|
|
return (
|
|
{
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
(
|
|
y["i"],
|
|
{
|
|
"o": x["i"] * y["i"],
|
|
"j": (
|
|
[x["j"][0][0] * y["j"][0][0]],
|
|
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
),
|
|
)
|
|
|
|
def fct_pointwise_different_carry(x, y):
|
|
return (
|
|
{
|
|
"i": x["i"] * y["i"],
|
|
"j": (
|
|
x["i"],
|
|
[x["j"][1][0] * y["j"][0][0]],
|
|
[{"o": x["j"][2][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
(
|
|
y["i"],
|
|
{
|
|
"o": x["i"] * y["i"] + x["j"][0][0],
|
|
"j": (
|
|
[x["j"][1][0] * y["j"][0][0]],
|
|
[{"o": x["j"][2][0]["o"] + y["j"][1][0]["o"]}],
|
|
),
|
|
},
|
|
),
|
|
)
|
|
|
|
x = torch.randn(3, 2, 2, device=device)
|
|
y = torch.randn(3, 2, 2, device=device)
|
|
z = torch.randn(3, 2, 2, device=device)
|
|
|
|
if reverse:
|
|
init_start, init_end = -1, None
|
|
inp_start, inp_end = 0, -1
|
|
else:
|
|
init_start, init_end = 0, 1
|
|
inp_start, inp_end = 1, None
|
|
|
|
# Regular case
|
|
init = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
|
|
"j": (
|
|
[torch._ops.ops.aten.slice(y, 0, init_start, init_end, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, init_start, init_end, 1)}],
|
|
),
|
|
}
|
|
inp = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, inp_start, inp_end, 1),
|
|
"j": (
|
|
[torch._ops.ops.aten.slice(y, 0, inp_start, inp_end, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, inp_start, inp_end, 1)}],
|
|
),
|
|
}
|
|
result = scan(
|
|
get_scan_combine_fn("complex_pointwise", False),
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
expected_result = _fake_scan(
|
|
get_scan_combine_fn("complex_pointwise", False),
|
|
init,
|
|
inp,
|
|
dim=0,
|
|
reverse=reverse,
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
# Pytree of output is different
|
|
result = scan(fct_pointwise_different_output, init, inp, dim=0, reverse=reverse)
|
|
expected_result = _fake_scan(
|
|
fct_pointwise_different_output, init=init, xs=inp, dim=0, reverse=reverse
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
# Pytree of carry is different
|
|
init = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
|
|
"j": (
|
|
torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
|
|
[torch._ops.ops.aten.slice(y, 0, init_start, init_end, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, init_start, init_end, 1)}],
|
|
),
|
|
}
|
|
inp = {
|
|
"i": torch._ops.ops.aten.slice(x, 0, inp_start, inp_end, 1),
|
|
"j": (
|
|
[torch._ops.ops.aten.slice(y, 0, inp_start, inp_end, 1)],
|
|
[{"o": torch._ops.ops.aten.slice(z, 0, inp_start, inp_end, 1)}],
|
|
),
|
|
}
|
|
result = scan(fct_pointwise_different_carry, init, inp, dim=0, reverse=reverse)
|
|
expected_result = _fake_scan(
|
|
fct_pointwise_different_carry, init=init, xs=inp, dim=0, reverse=reverse
|
|
)
|
|
self.assertEqual(result, expected_result)
|
|
|
|
def test_scan_RNN(self):
|
|
dim = 1
|
|
device = torch.device("cpu")
|
|
|
|
rnn = torch.nn.RNN(
|
|
input_size=5,
|
|
hidden_size=7,
|
|
)
|
|
rnn = rnn.to(device=device)
|
|
x = torch.randn(1, 2, 5, device=device)
|
|
h = torch.randn(1, 2, 7, device=device)
|
|
|
|
new_state_dict = {
|
|
"weight_ih_l0": torch.ones_like(rnn.weight_ih_l0),
|
|
"bias_ih_l0": torch.ones_like(rnn.bias_ih_l0),
|
|
"weight_hh_l0": torch.ones_like(rnn.weight_hh_l0),
|
|
"bias_hh_l0": torch.ones_like(rnn.bias_hh_l0),
|
|
}
|
|
rnn.load_state_dict(new_state_dict)
|
|
|
|
def RNN(x: torch.Tensor, y: torch.Tensor):
|
|
W_ih = torch.ones((5, 7), device=device)
|
|
b_ih = torch.ones((7), device=device)
|
|
W_hh = torch.ones((7, 7), device=device)
|
|
b_hh = torch.ones((7), device=device)
|
|
c_new = y @ W_ih + b_ih
|
|
h_new = torch.tanh(c_new + x @ W_hh + b_hh)
|
|
return h_new, h_new
|
|
|
|
expected_result = rnn(
|
|
torch.permute(x, (1, 0, 2)), torch.unsqueeze(h[:, 0, :], 0)
|
|
)
|
|
expected_result_out = torch.permute(expected_result[0], (1, 0, 2))
|
|
expected_result_state = torch.permute(expected_result[1], (1, 0, 2))
|
|
result = scan(RNN, h[:, 0:1, :], x, dim=dim)
|
|
self.assertEqual(result[0], expected_result_state)
|
|
self.assertEqual(result[1], expected_result_out)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_scan_simple_graph_no_carry(self):
|
|
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
|
|
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
|
|
|
|
def f(fct, init, xs):
|
|
return scan(fct, init, xs, dim=0, reverse=True)
|
|
|
|
# Wrong number of returns from function
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError: The pytree of the new carry produced
|
|
# by the operator needs to match the pytree of the init
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
gm = make_fx(f, tracing_mode="symbolic")(
|
|
get_scan_combine_fn("add", True), init, x
|
|
)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_scan_simple_graph_wrong_carry(self):
|
|
def add_wrong_carry(x: torch.Tensor, y: torch.Tensor):
|
|
return (x + y)[0, :], x + y
|
|
|
|
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
|
|
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
|
|
|
|
def f(fct, init, xs):
|
|
return scan(fct, init, xs, dim=0, reverse=True)
|
|
|
|
# Wrong carry shape
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError: The pytree of the new carry produced by
|
|
# the operator needs to match the pytree of the init
|
|
torch._dynamo.exc.Unsupported,
|
|
"Observed exception.*",
|
|
):
|
|
gm = make_fx(f, tracing_mode="symbolic")(add_wrong_carry, init, x)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_scan_simple_graph_wrong_dtype(self):
|
|
def add_wrong_dtype(x: torch.Tensor, y: torch.Tensor):
|
|
return torch.ones_like(x + y, dtype=torch.int64), x + y
|
|
|
|
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
|
|
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
|
|
|
|
def f(fct, init, xs):
|
|
return scan(fct, init, xs, dim=0, reverse=True)
|
|
|
|
# Wrong dtype
|
|
with self.assertRaisesRegex(
|
|
# Should be: RuntimeError: Expected the init and
|
|
# the new carry produced by the operator to be a tensor of
|
|
# torch.int64 but got torch.float32 and torch.int64
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
".*",
|
|
):
|
|
gm = make_fx(f, tracing_mode="symbolic")(add_wrong_dtype, init, x)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_scan_simple_graph(self):
|
|
from torch._dynamo.testing import EagerAndRecordGraphs
|
|
|
|
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
|
|
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
|
|
|
|
def f(fct, init, xs):
|
|
return scan(fct, init, xs, dim=0, reverse=True)
|
|
|
|
# Correct case
|
|
gm = make_fx(f, tracing_mode="symbolic")(
|
|
get_scan_combine_fn("add", False), init, x
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, fct_1, init_1, xs_1):
|
|
slice_1 = torch.ops.aten.slice.Tensor(xs_1, 0, 0, 1)
|
|
add = torch.ops.aten.add.Tensor(init_1, slice_1); add = None
|
|
add_1 = torch.ops.aten.add.Tensor(init_1, slice_1); slice_1 = add_1 = None
|
|
sym_size_int = torch.ops.aten.sym_size.int(init_1, 1)
|
|
sym_size_int_1 = torch.ops.aten.sym_size.int(init_1, 2)
|
|
new_empty = torch.ops.aten.new_empty.default(init_1, [1, sym_size_int, sym_size_int_1], dtype = torch.float32, device = device(type='cpu'), pin_memory = False); new_empty = None
|
|
new_empty_1 = torch.ops.aten.new_empty.default(xs_1, [1, sym_size_int, sym_size_int_1], dtype = torch.float32, device = device(type='cpu'), pin_memory = False); sym_size_int = sym_size_int_1 = new_empty_1 = None
|
|
scan_combine_graph_0 = self.scan_combine_graph_0
|
|
scan = torch.ops.higher_order.scan(scan_combine_graph_0, [init_1], [xs_1], 0, True); scan_combine_graph_0 = init_1 = xs_1 = None
|
|
getitem = scan[0]
|
|
getitem_1 = getitem[0]; getitem = None
|
|
getitem_2 = scan[1]; scan = None
|
|
getitem_3 = getitem_2[0]; getitem_2 = None
|
|
return (getitem_1, getitem_3)""", # noqa: B950
|
|
)
|
|
|
|
# Check graph
|
|
backend = EagerAndRecordGraphs()
|
|
torch.compile(f, backend=backend)(get_scan_combine_fn("add", False), init, x)
|
|
gm = backend.graphs[0]
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_init_ : torch.Tensor, L_xs_ : torch.Tensor):
|
|
l_init_ = L_init_
|
|
l_xs_ = L_xs_
|
|
slice_1 = torch.ops.aten.slice(l_xs_, 0, 0, 1, 1)
|
|
out_l = l_init_ + slice_1; out_l = None
|
|
add_1 = l_init_ + slice_1; slice_1 = add_1 = None
|
|
child = l_init_.new_empty((1, 10, 2), dtype = torch.float32, device = device(type='cpu'), requires_grad = False); child = None
|
|
child_1 = l_xs_.new_empty((1, 10, 2), dtype = torch.float32, device = device(type='cpu'), requires_grad = False); child_1 = None
|
|
scan_combine_fn_0 = self.scan_combine_fn_0
|
|
scan = torch.ops.higher_order.scan(scan_combine_fn_0, [l_init_], [l_xs_], 0, True); scan_combine_fn_0 = l_init_ = l_xs_ = None
|
|
getitem = scan[0]
|
|
getitem_1 = getitem[0]; getitem = None
|
|
getitem_2 = scan[1]; scan = None
|
|
getitem_3 = getitem_2[0]; getitem_2 = None
|
|
return (getitem_1, getitem_3)""", # noqa: B950
|
|
)
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
|
|
@skipIfNoDynamoSupport
|
|
class TestControlFlowTraced(TestCase):
|
|
def setUp(self):
|
|
torch._dynamo.reset()
|
|
super().setUp()
|
|
|
|
def _check_tracing(self, fn, args, allow_non_fake_inputs=False):
|
|
graphs = {}
|
|
eager_res = fn(*args)
|
|
for tracing_mode in ["symbolic", "real", "fake"]:
|
|
graph = make_fx(
|
|
fn,
|
|
tracing_mode=tracing_mode,
|
|
_allow_non_fake_inputs=allow_non_fake_inputs,
|
|
)(*args)
|
|
graphs[tracing_mode] = graph
|
|
self.assertEqual(graph(*args), eager_res)
|
|
return graphs
|
|
|
|
def _check_compile(self, fn, args, *, backend="eager"):
|
|
eager_res = fn(*args)
|
|
compiled_fn = torch.compile(fn, backend=backend)
|
|
self.assertEqual(compiled_fn(*args), eager_res)
|
|
|
|
def test_cond_traced_not_nested(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False))
|
|
result_true = graph.forward(x, torch.tensor(True))
|
|
result_false = graph.forward(x, torch.tensor(False))
|
|
self.assertFalse(torch.allclose(result_true, result_false))
|
|
self.assertEqual(result_true, torch.sin(x))
|
|
self.assertEqual(result_false, torch.cos(x))
|
|
|
|
graph = make_fx(f, tracing_mode="symbolic")(x, torch.tensor(False))
|
|
self.assertEqual(graph(x, torch.tensor(True)), f(x, torch.tensor(True)))
|
|
|
|
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
|
|
def test_cond_simple_with_linear_compile_check_graph(self):
|
|
from torch._dynamo.testing import EagerAndRecordGraphs
|
|
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
x = torch.randn(4, requires_grad=True)
|
|
|
|
def f(pred, x):
|
|
result = cond(pred, true_fn, false_fn, (x,))
|
|
grad_out = torch.ones_like(result)
|
|
return torch.autograd.grad(result, (x,), grad_out)
|
|
|
|
backend = EagerAndRecordGraphs()
|
|
torch.compile(f, backend=backend)(torch.tensor(False), x)
|
|
self.assertEqual(len(backend.graphs), 2)
|
|
gm = backend.graphs[0]
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_pred_ : torch.Tensor, L_x_ : torch.Tensor):
|
|
l_pred_ = L_pred_
|
|
l_x_ = L_x_
|
|
cond_true_0 = self.cond_true_0
|
|
cond_false_0 = self.cond_false_0
|
|
cond = torch.ops.higher_order.cond(l_pred_, cond_true_0, cond_false_0, [l_x_]); l_pred_ = cond_true_0 = cond_false_0 = l_x_ = None
|
|
result = cond[0]; cond = None
|
|
grad_out = torch.ones_like(result)
|
|
return (result, grad_out)""", # noqa: B950
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
gm.cond_true_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_x_):
|
|
l_x__1 = l_x_
|
|
sin = l_x__1.sin(); l_x__1 = None
|
|
return (sin,)""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.cond_false_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_x_):
|
|
l_x__1 = l_x_
|
|
cos = l_x__1.cos(); l_x__1 = None
|
|
return (cos,)""", # noqa: B950
|
|
)
|
|
|
|
backward_gm = backend.graphs[1]
|
|
self.assertExpectedInline(
|
|
backward_gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_ctx_saved_tensors_0_ : torch.Tensor, L_ctx_pred : torch.Tensor, L_flat_grads_0_ : torch.Tensor):
|
|
l_ctx_saved_tensors_0_ = L_ctx_saved_tensors_0_
|
|
l_ctx_pred = L_ctx_pred
|
|
l_flat_grads_0_ = L_flat_grads_0_
|
|
cond_true_0 = self.cond_true_0
|
|
cond_false_0 = self.cond_false_0
|
|
cond = torch.ops.higher_order.cond(l_ctx_pred, cond_true_0, cond_false_0, [l_ctx_saved_tensors_0_, l_flat_grads_0_]); l_ctx_pred = cond_true_0 = cond_false_0 = l_ctx_saved_tensors_0_ = l_flat_grads_0_ = None
|
|
getitem = cond[0]; cond = None
|
|
return (getitem,)""", # noqa: B950
|
|
)
|
|
|
|
def test_while_loop_nested_traced(self):
|
|
fn, inp = WHILE_LOOP_TESTS["nested"]
|
|
graphs = self._check_tracing(fn, inp)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, out_iter_1, it_1, y_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (out_iter_1, it_1, y_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = out_iter_1 = it_1 = y_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]; while_loop = None
|
|
return (getitem, getitem_1, getitem_2)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
sum_1 = torch.ops.aten.sum.default(arg0_1); arg0_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 2); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]; while_loop = None
|
|
add = torch.ops.aten.add.Tensor(getitem, 1); getitem = None
|
|
return (add, getitem_1, getitem_2)
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def _wrap_with_functionalize(self, fn, func_type):
|
|
mode = None
|
|
if func_type == "cpp":
|
|
fn = CppFunctionalizeAPI().functionalize(fn)
|
|
elif func_type == "python":
|
|
fn = PythonFunctionalizeAPI().functionalize(fn)
|
|
mode = FunctionalTensorMode()
|
|
elif func_type == "functorch":
|
|
fn = torch.func.functionalize(fn)
|
|
else:
|
|
assert func_type == "no"
|
|
return fn, mode
|
|
|
|
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
|
|
def test_while_loop_simple_functionalize_check_graph(self, func_type):
|
|
fn, inp = WHILE_LOOP_TESTS["simple_with_mutation"]
|
|
fn, mode = self._wrap_with_functionalize(fn, func_type)
|
|
mode = mode if mode is not None else contextlib.nullcontext()
|
|
with mode:
|
|
graphs = self._check_tracing(fn, inp)
|
|
if func_type == "no":
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, x_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
|
|
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
|
|
sum_1 = torch.ops.aten.sum.default(add__1); add__1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
|
|
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
|
|
add = torch.ops.aten.add.Tensor(add__1, 1); add__1 = None
|
|
return (add,)
|
|
""",
|
|
)
|
|
elif func_type == "python":
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
|
|
return (add_2,)
|
|
""",
|
|
)
|
|
else:
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, x_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
|
|
return (add_2,)
|
|
""",
|
|
)
|
|
|
|
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_functionalize(self, func_type, while_loop_test):
|
|
# simple_with_linear doesn't work becaue parameters and buffers
|
|
# are not inputs so they're not wrapped by functionalization and tracing.
|
|
if while_loop_test not in ("simple_with_linear", "nested_with_linear"):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
fn, mode = self._wrap_with_functionalize(fn, func_type)
|
|
mode = mode if mode is not None else contextlib.nullcontext()
|
|
with mode:
|
|
self._check_tracing(fn, inp)
|
|
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_tracing(self, while_loop_test):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
allow_non_fake_inputs = (
|
|
False
|
|
if while_loop_test not in ("simple_with_linear", "nested_with_linear")
|
|
else True
|
|
)
|
|
self._check_tracing(fn, inp, allow_non_fake_inputs)
|
|
|
|
@parametrize("backend", ["eager", "aot_eager"])
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_compile(self, backend, while_loop_test):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
self._check_compile(fn, inp, backend=backend)
|
|
|
|
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
|
|
def test_while_loop_simple_with_linear_compile_check_graph(self):
|
|
fn, inp = WHILE_LOOP_TESTS["simple_with_linear"]
|
|
from torch._dynamo.testing import EagerAndRecordGraphs
|
|
|
|
backend = EagerAndRecordGraphs()
|
|
torch.compile(fn, backend=backend)(*inp)
|
|
self.assertEqual(len(backend.graphs), 1)
|
|
gm = backend.graphs[0]
|
|
if torch._dynamo.config.inline_inbuilt_nn_modules:
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_iter_ : torch.Tensor, L_x_ : torch.Tensor, L_self_buffers_dec_ : torch.Tensor, L_self_modules_linear_parameters_weight_ : torch.nn.parameter.Parameter, L_self_modules_linear_parameters_bias_ : torch.nn.parameter.Parameter):
|
|
l_iter_ = L_iter_
|
|
l_x_ = L_x_
|
|
l_self_buffers_dec_ = L_self_buffers_dec_
|
|
l_self_modules_linear_parameters_weight_ = L_self_modules_linear_parameters_weight_
|
|
l_self_modules_linear_parameters_bias_ = L_self_modules_linear_parameters_bias_
|
|
cond_fn_0 = self.cond_fn_0
|
|
body_fn_0 = self.body_fn_0
|
|
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_iter_, l_x_), (l_self_buffers_dec_, l_self_modules_linear_parameters_bias_, l_self_modules_linear_parameters_weight_)); cond_fn_0 = body_fn_0 = l_iter_ = l_x_ = l_self_buffers_dec_ = l_self_modules_linear_parameters_bias_ = l_self_modules_linear_parameters_weight_ = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]; while_loop = None
|
|
return (getitem, getitem_1)""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.cond_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l_self_buffers_dec__cond_fn, l_self_modules_linear_parameters_bias__body_fn, l_self_modules_linear_parameters_weight__body_fn):
|
|
sub = l_iter_ - l_self_buffers_dec__cond_fn; l_iter_ = l_self_buffers_dec__cond_fn = None
|
|
gt = sub > 0; sub = None
|
|
return gt""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.body_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l_self_buffers_dec__cond_fn, l_self_modules_linear_parameters_bias__body_fn, l_self_modules_linear_parameters_weight__body_fn):
|
|
child = l_iter_ - 1; l_iter_ = None
|
|
child_1 = torch._C._nn.linear(l_x_, l_self_modules_linear_parameters_weight__body_fn, l_self_modules_linear_parameters_bias__body_fn); l_x_ = l_self_modules_linear_parameters_weight__body_fn = l_self_modules_linear_parameters_bias__body_fn = None
|
|
return (child, child_1)""", # noqa: B950
|
|
)
|
|
else:
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_iter_ : torch.Tensor, L_x_ : torch.Tensor):
|
|
l_iter_ = L_iter_
|
|
l_x_ = L_x_
|
|
l__self___dec = self.L__self___dec
|
|
l__self___linear_weight = self.L__self___linear_weight
|
|
l__self___linear_bias = self.L__self___linear_bias
|
|
cond_fn_0 = self.cond_fn_0
|
|
body_fn_0 = self.body_fn_0
|
|
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_iter_, l_x_), (l__self___dec, l__self___linear_bias, l__self___linear_weight)); cond_fn_0 = body_fn_0 = l_iter_ = l_x_ = l__self___dec = l__self___linear_bias = l__self___linear_weight = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]; while_loop = None
|
|
return (getitem, getitem_1)""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.cond_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
|
|
sub = l_iter_ - l__self___dec_cond_fn; l_iter_ = l__self___dec_cond_fn = None
|
|
gt = sub > 0; sub = None
|
|
return gt""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.body_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
|
|
child = l_iter_ - 1; l_iter_ = None
|
|
child_1 = torch._C._nn.linear(l_x_, l__self___linear_weight_body_fn, l__self___linear_bias_body_fn); l_x_ = l__self___linear_weight_body_fn = l__self___linear_bias_body_fn = None
|
|
return (child, child_1)""", # noqa: B950
|
|
)
|
|
|
|
def test_while_loop_nested2_traced(self):
|
|
fn, inp = WHILE_LOOP_TESTS["nested2"]
|
|
graphs = self._check_tracing(fn, inp)
|
|
gm = graphs["symbolic"]
|
|
outer_body = gm.while_loop_body_graph_0
|
|
outer_cond = gm.while_loop_cond_graph_0
|
|
inner_body = outer_body.while_loop_body_graph_0
|
|
inner_cond = outer_body.while_loop_cond_graph_0
|
|
self.assertExpectedInline(
|
|
gm.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
return (getitem, getitem_1, getitem_2, getitem_3)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
outer_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
|
|
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
|
|
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
|
|
return (sub, clone, mul, div)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
outer_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
|
|
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
|
|
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
|
|
return (sub, clone, mul, div)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
inner_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
sub = torch.ops.aten.sub.Tensor(arg1_1, 1); arg1_1 = None
|
|
add = torch.ops.aten.add.Tensor(arg2_1, 3.14); arg2_1 = None
|
|
sub_1 = torch.ops.aten.sub.Tensor(arg3_1, 2.71); arg3_1 = None
|
|
return (clone, sub, add, sub_1)
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
inner_cond.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
gt = torch.ops.aten.gt.Scalar(arg1_1, 0); arg1_1 = None
|
|
return gt
|
|
""",
|
|
)
|
|
|
|
def test_cond_nested_traced(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(x, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [x])
|
|
return x + z
|
|
|
|
def false_fn(x, _):
|
|
return x.cos()
|
|
|
|
def f(x, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [x, pred2])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
result_true_true = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(True)
|
|
) # True + True -> x * x
|
|
result_true_false = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(False)
|
|
) # True + True -> x + x
|
|
result_false_true = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(True)
|
|
) # False + either -> cos
|
|
result_false_false = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
) # False + either -> cos
|
|
|
|
self.assertNotEqual(result_true_true, result_true_false)
|
|
self.assertFalse(torch.allclose(result_false_true, result_true_true))
|
|
|
|
self.assertEqual(result_false_true, result_false_false)
|
|
|
|
self.assertEqual(result_true_true, (x * x) + x)
|
|
self.assertEqual(result_true_false, x + x + x)
|
|
|
|
self.assertEqual(result_false_true, torch.cos(x))
|
|
|
|
graph = make_fx(f, tracing_mode="symbolic")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
self.assertEqual(
|
|
graph(x, torch.tensor(True), torch.tensor(True)),
|
|
f(x, torch.tensor(True), torch.tensor(True)),
|
|
)
|
|
|
|
def test_cond_functionalized(self):
|
|
def true_fn(x):
|
|
y = x.sin()
|
|
y.add_(4)
|
|
return x.sin().max() + y.sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
all_ops_in_true_branch = []
|
|
for node in graph_module.true_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
all_ops_in_true_branch.append(node.target)
|
|
|
|
self.assertFalse(any(op._schema.is_mutable for op in all_ops_in_true_branch))
|
|
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
def test_cond_accepts_torch_function_as_inputs(self):
|
|
a = torch.randn(3, 4)
|
|
b = torch.randn(3, 4)
|
|
|
|
def f(a, b):
|
|
return cond(a.sum() > 0, torch.add, torch.mul, (a, b))
|
|
|
|
gm = self._check_tracing(f, (a, b))["symbolic"]
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, a_1, b_1):
|
|
sum_1 = torch.ops.aten.sum.default(a_1)
|
|
gt = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [a_1, b_1]); gt = true_graph_0 = false_graph_0 = a_1 = b_1 = None
|
|
getitem = cond[0]; cond = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (add,)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.false_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_cond_retrace_functionalized(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x):
|
|
return cond(x.all(), true_fn, false_fn, (x,))
|
|
|
|
inp = torch.ones(1, 2)
|
|
gm_non_functional = make_fx(f, tracing_mode="real")(inp)
|
|
gm_functional = make_fx(
|
|
torch.func.functionalize(gm_non_functional), tracing_mode="real"
|
|
)(inp)
|
|
self.assertEqual(gm_functional(torch.zeros(1, 2)), f(torch.zeros(1, 2)))
|
|
|
|
def test_cond_subgraph_same_shape_env_as_parent(self):
|
|
def true_fn(x):
|
|
return x.sin() + 10
|
|
|
|
def false_fn(x):
|
|
return x.cos() - 20
|
|
|
|
def f(x, pred):
|
|
y = cond(pred, true_fn, false_fn, [x])
|
|
z = torch.add(y, y)
|
|
return z
|
|
|
|
symbolic_traced_graph = self._check_tracing(
|
|
f, (torch.ones(4), torch.Tensor([True]))
|
|
)["symbolic"]
|
|
graph_shape_env = symbolic_traced_graph.shape_env
|
|
|
|
def _node_shape_env_iter(gm):
|
|
for node in symbolic_traced_graph.graph.nodes:
|
|
if node.op == "call_function":
|
|
val = node.meta.get("val")
|
|
if isinstance(val, tuple):
|
|
for v in val:
|
|
yield v.fake_mode.shape_env
|
|
else:
|
|
yield val.fake_mode.shape_env
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph.true_graph_0):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph.false_graph_0):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
def test_cond_functionalized_nested(self):
|
|
def true_true_fn(x):
|
|
y = x.cos()
|
|
y.add_(4)
|
|
return x.sin().max() + y.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
gm_true_true_branch = graph_module.true_graph_0.true_graph_0
|
|
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
all_ops = []
|
|
for node in gm_true_true_branch.graph.nodes:
|
|
if node.op == "call_function":
|
|
all_ops.append(node.target)
|
|
|
|
self.assertFalse(any(op._schema.is_mutable for op in all_ops))
|
|
|
|
def test_cond_functionalized_data_dependent_pred(self):
|
|
def true_fn(x):
|
|
return x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.nonzero().shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
def test_cond_functionalized_input_mutation_on_true_brancte(self):
|
|
def true_fn(x):
|
|
view_x = x.view(x.shape)
|
|
view_x.add_(1)
|
|
return view_x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
# torch.cond inlines into one of the branches because the predicate
|
|
# is a constant.
|
|
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
view = torch.ops.aten.view.default(x_1, [4, 5])
|
|
add = torch.ops.aten.add.Tensor(view, 1); view = None
|
|
view_1 = torch.ops.aten.view.default(add, [4, 5]); add = None
|
|
view_2 = torch.ops.aten.view.default(view_1, [4, 5])
|
|
sin = torch.ops.aten.sin.default(view_2); view_2 = None
|
|
sum_1 = torch.ops.aten.sum.default(sin); sin = None
|
|
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
|
|
return sum_1""",
|
|
)
|
|
|
|
# torch.cond triggers the check of the branches because the predicate
|
|
# is a SymBool.
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
def test_cond_functionalized_input_mutation_on_false_branch(self):
|
|
def true_fn(x):
|
|
return x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
view_x.add_(1)
|
|
return view_x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(5, 5),)
|
|
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
# torch.cond inlines into one of the branches because the predicate
|
|
# is a constant.
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
view = torch.ops.aten.view.default(x_1, [5, 5])
|
|
add = torch.ops.aten.add.Tensor(view, 1); view = None
|
|
view_1 = torch.ops.aten.view.default(add, [5, 5]); add = None
|
|
view_2 = torch.ops.aten.view.default(view_1, [5, 5])
|
|
cos = torch.ops.aten.cos.default(view_2); view_2 = None
|
|
sum_1 = torch.ops.aten.sum.default(cos); cos = None
|
|
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
|
|
return sum_1""",
|
|
)
|
|
|
|
# torch.cond triggers the check of the branches because the predicate
|
|
# is a SymBool.
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
def test_cond_functionalized_output_alias_input(self):
|
|
def true_fn(x):
|
|
return x
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
return view_x
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(5, 5),)
|
|
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
# torch.cond inlines into one of the branches because the predicate
|
|
# is a constant.
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
view = torch.ops.aten.view.default(x_1, [5, 5]); x_1 = None
|
|
return view""",
|
|
)
|
|
|
|
# torch.cond triggers the check of the branches because the predicate
|
|
# is a SymBool.
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
def test_cond_functionalized_nested_input_mutation(self):
|
|
def true_true_fn(x):
|
|
x.add_(4)
|
|
return x.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
def test_cond_functionalized_nested_input_mutation_with_aot_func(self):
|
|
def true_true_fn(x):
|
|
x.add_(4)
|
|
return x.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(4, 5)
|
|
try:
|
|
example_input_func = to_fun_old(example_input)
|
|
torch._enable_functionalization(reapply_views=False)
|
|
f(example_input_func)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(f, tracing_mode="symbolic")(example_input_func)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return func(*args, **kwargs)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input_func)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_cond_functionalized_input_aliasing_with_aot_func(self):
|
|
def true_fn(x):
|
|
return x
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
return view_x
|
|
|
|
def f(x):
|
|
pred = x.sum() > 0
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(5, 5)
|
|
try:
|
|
example_input_func = to_fun_old(example_input)
|
|
torch._enable_functionalization(reapply_views=False)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
f(example_input_func)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: torch._to_functional_tensor(x)
|
|
if isinstance(x, torch.Tensor)
|
|
else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: torch._to_functional_tensor(x)
|
|
if isinstance(x, torch.Tensor)
|
|
else x,
|
|
kwargs,
|
|
)
|
|
return func(*func_args, **func_kwargs)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input)
|
|
|
|
def test_cond_functionalized_aot_func_check_functional(self):
|
|
def true_fn(x):
|
|
return x.cos()
|
|
|
|
def false_fn(x):
|
|
y = x.sin()
|
|
y.add_(5)
|
|
return y
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(5, 5)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
kwargs,
|
|
)
|
|
return pytree.tree_map(
|
|
from_fun_old, func(*func_args, **func_kwargs)
|
|
)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
result_gm = make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input)
|
|
for node in result_gm.true_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
for node in result_gm.false_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
self.assertEqual(result_gm(torch.ones(5, 5)), f(torch.ones(5, 5)))
|
|
|
|
def test_cond_nested_traced_other_inputs(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(k, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [k])
|
|
return torch.add(torch.tensor([0.25, 0.25]), z)
|
|
|
|
def false_fn(k, _):
|
|
return k.cos()
|
|
|
|
def f(k, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [k, pred2])
|
|
|
|
x = torch.tensor([0.5, 0.5])
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
a = torch.tensor([1.0, 1.0])
|
|
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
|
|
|
|
b = torch.tensor([2.0, 2.0])
|
|
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
|
|
|
|
def test_cond_nested_traced_multi(self):
|
|
def true_a(y):
|
|
return y * y
|
|
|
|
def false_a(y):
|
|
return y + y
|
|
|
|
def true_b(y, z):
|
|
return y + z
|
|
|
|
def false_b(y, z):
|
|
return y * z
|
|
|
|
def f(x, pred, pred2):
|
|
a_out = cond(pred, true_a, false_a, [x])
|
|
b_out = cond(pred2, true_b, false_b, [x, x])
|
|
return a_out + b_out
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
self.assertExpectedInline(
|
|
graph.code.strip(),
|
|
"""\
|
|
def forward(self, x_1, pred_1, pred2_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
|
|
return add""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graph.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_raise_error_on_mismatch_type_size(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return (x, x)
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.CondOpArgsMismatchError,
|
|
"Expected to return same number of outputs but got:",
|
|
):
|
|
make_fx(f)(x, torch.tensor(False))
|
|
|
|
def test_raise_error_on_mismatch_tensor_size(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return torch.zeros([10, 10])
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f)(x, torch.tensor(False))
|
|
|
|
def test_cond_traced_not_nested_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
result_true = graph.forward(x, torch.tensor(True))
|
|
result_false = graph.forward(x, torch.tensor(False))
|
|
self.assertFalse(torch.allclose(result_true, result_false))
|
|
self.assertEqual(result_true, torch.sin(x))
|
|
self.assertEqual(result_false, torch.cos(x))
|
|
|
|
def test_cond_nested_traced_fake_tensor(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(x, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [x])
|
|
return x + z
|
|
|
|
def false_fn(x, _):
|
|
return x.cos()
|
|
|
|
def f(x, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [x, pred2])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
result_true_true = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(True)
|
|
) # True + True -> x * x
|
|
result_true_false = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(False)
|
|
) # True + True -> x + x
|
|
result_false_true = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(True)
|
|
) # False + either -> cos
|
|
result_false_false = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
) # False + either -> cos
|
|
|
|
self.assertNotEqual(result_true_true, result_true_false)
|
|
self.assertFalse(torch.allclose(result_false_true, result_true_true))
|
|
|
|
self.assertEqual(result_false_true, result_false_false)
|
|
|
|
self.assertEqual(result_true_true, (x * x) + x)
|
|
self.assertEqual(result_true_false, x + x + x)
|
|
|
|
self.assertEqual(result_false_true, torch.cos(x))
|
|
|
|
def test_cond_nested_traced_other_inputs_fake_tensor(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(k, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [k])
|
|
return torch.add(torch.tensor([0.25, 0.25]), z)
|
|
|
|
def false_fn(k, _):
|
|
return k.cos()
|
|
|
|
def f(k, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [k, pred2])
|
|
|
|
x = torch.tensor([0.5, 0.5])
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
a = torch.tensor([1.0, 1.0])
|
|
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
|
|
|
|
b = torch.tensor([2.0, 2.0])
|
|
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
|
|
|
|
def test_cond_nested_traced_multi_fake_tensor(self):
|
|
def true_a(y):
|
|
return y * y
|
|
|
|
def false_a(y):
|
|
return y + y
|
|
|
|
def true_b(y, z):
|
|
return y + z
|
|
|
|
def false_b(y, z):
|
|
return y * z
|
|
|
|
def f(x, pred, pred2):
|
|
a_out = cond(pred, true_a, false_a, [x])
|
|
b_out = cond(pred2, true_b, false_b, [x, x])
|
|
return a_out + b_out
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
graph.code.strip(),
|
|
"""\
|
|
def forward(self, x_1, pred_1, pred2_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None
|
|
getitem = cond[0]; cond = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
cond_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
|
|
getitem_1 = cond_1[0]; cond_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
|
|
return add""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graph.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_raise_error_on_mismatch_type_size_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return (x, x)
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.CondOpArgsMismatchError,
|
|
"Expected to return same number of outputs but got:",
|
|
):
|
|
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
|
|
def test_raise_error_on_mismatch_tensor_size_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return torch.zeros([10, 10])
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
|
|
def check_map_count(self, gm, op_count):
|
|
i = 0
|
|
for m in gm.modules():
|
|
for node in m.graph.nodes:
|
|
if (
|
|
node.op == "call_function"
|
|
and node.target == torch.ops.higher_order.map_impl
|
|
):
|
|
i += 1
|
|
self.assertEqual(i, op_count)
|
|
|
|
def test_tracing_map_real(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
return control_flow.map(f, xs, y)
|
|
|
|
gm = make_fx(g, tracing_mode="real")(torch.ones(3, 2, 2), torch.ones(2))
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_simple(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
return control_flow.map(f, xs, y)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(torch.ones(3, 2, 4), torch.ones(4))
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_list(self):
|
|
def f(x, y):
|
|
return [x[0][0] + y, x[1] * y]
|
|
|
|
def g(xs, y, z):
|
|
out = control_flow.map(f, xs, y)
|
|
return out[0] + z, out[1] * z
|
|
|
|
example_x = [[torch.ones(3, 4, 5)], torch.ones(3, 4, 5)]
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
example_x, torch.ones(5), torch.ones(5)
|
|
)
|
|
x = [[torch.randn(4, 5, 6)], torch.ones(4, 5, 6)]
|
|
y = torch.randn(6)
|
|
z = torch.ones(6)
|
|
res = gm(x, y, z)
|
|
self.assertEqual(res, g(x, y, z))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_dict(self):
|
|
def f(x, y):
|
|
return {"d": x["b"]["a"] + y, "e": x["c"] * y}
|
|
|
|
def g(xs, y, z):
|
|
out = control_flow.map(f, xs, y)
|
|
return {"f": out["d"] + z, "g": out["e"] * z}
|
|
|
|
example_x = {"b": {"a": torch.ones(3, 4, 5)}, "c": torch.ones(3, 4, 5)}
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
example_x, torch.ones(5), torch.ones(5)
|
|
)
|
|
x = {"b": {"a": torch.randn(4, 5, 6)}, "c": torch.ones(4, 5, 6)}
|
|
y = torch.randn(6)
|
|
z = torch.ones(6)
|
|
res = gm(x, y, z)
|
|
self.assertEqual(res, g(x, y, z))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_autograd_symbolic_simple(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
return torch.autograd.grad(out, (xs, y), torch.ones_like(out))
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
torch.ones(3, 4, 5, requires_grad=True), torch.ones(5, requires_grad=True)
|
|
)
|
|
x = torch.randn(4, 5, 6, requires_grad=True)
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_symbolic_list(self):
|
|
import torch.utils._pytree as pytree
|
|
|
|
def f(x, y):
|
|
return [x[0].cos() + y.sin(), x[1].sin() * y.cos()]
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
flat_out = pytree.tree_leaves(out)
|
|
flat_inp = pytree.tree_leaves((xs, y))
|
|
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
|
|
return torch.autograd.grad(
|
|
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
|
|
)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
[torch.ones(3, 4, 5), torch.ones(3, 4, 5, requires_grad=True)],
|
|
torch.ones(5, requires_grad=True),
|
|
)
|
|
x = [torch.randn(4, 5, 6), torch.ones(4, 5, 6, requires_grad=True)]
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_symbolic_dict(self):
|
|
def f(x, y):
|
|
return [x["a"] + y, x["b"] * y]
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
flat_out = pytree.tree_leaves(out)
|
|
flat_inp = pytree.tree_leaves((xs, y))
|
|
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
|
|
return torch.autograd.grad(
|
|
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
|
|
)
|
|
|
|
traced_x = {
|
|
"a": torch.ones(3, 4, 5, requires_grad=True),
|
|
"b": torch.ones(3, 4, 5, requires_grad=True),
|
|
}
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
traced_x, torch.ones(5, requires_grad=True)
|
|
)
|
|
x = {
|
|
"a": torch.randn(4, 5, 6, requires_grad=True),
|
|
"b": torch.ones(4, 5, 6, requires_grad=True),
|
|
}
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_aot_functionalized(self):
|
|
def inner(x, y):
|
|
z = x - 1
|
|
z.add_(1)
|
|
return z * y
|
|
|
|
def f(xs, y):
|
|
res = control_flow.map(inner, xs, y)
|
|
grads = torch.autograd.grad(res, (xs, y), torch.ones_like(res))
|
|
return grads
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
example_inputs = (
|
|
torch.ones(3, 2, 4, requires_grad=True),
|
|
torch.ones(2, 4, requires_grad=True),
|
|
)
|
|
gm = make_fx(f, tracing_mode="symbolic")(*example_inputs)
|
|
fgm = make_fx(f_wrapper(f), tracing_mode="symbolic")(*example_inputs)
|
|
xs = torch.ones(3, 4, 5, requires_grad=True)
|
|
y = torch.ones(4, 5, requires_grad=True)
|
|
|
|
self.assertEqual(gm(xs, y), f(xs, y))
|
|
|
|
def count_mutable(gm):
|
|
c = 0
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function":
|
|
if node.target == torch.ops.higher_order.map_impl:
|
|
c += count_mutable(getattr(gm, str(node.args[0])))
|
|
elif schema := getattr(node.target, "_schema", None):
|
|
c += int(schema.is_mutable)
|
|
return c
|
|
|
|
self.assertEqual(count_mutable(fgm), 0)
|
|
# One for forward, one for recomputation logic in backward
|
|
self.assertEqual(count_mutable(gm), 2)
|
|
|
|
def test_map_functionalized(self):
|
|
def map_fn(x, y):
|
|
z = x + y
|
|
z.add_(4)
|
|
return z
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
gm = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
for node in gm.body_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_map_functionalized_aot_func(self):
|
|
def map_fn(x, y):
|
|
z = x + y
|
|
z.add_(4)
|
|
return z
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
|
|
gm = make_fx(f_wrapper(f))(*example_inputs)
|
|
|
|
for node in gm.body_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_map_functionalized_arg_mutation(self):
|
|
def map_fn(x, y):
|
|
y.add_(4)
|
|
return x + y
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is mutating the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_map_functionalized_elem_mutation(self):
|
|
def map_fn(x, y):
|
|
x.add_(4)
|
|
return x + y
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is mutating the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
def test_cond_autograd_backward(self):
|
|
def true_fn(x):
|
|
return x.cos()
|
|
|
|
def false_fn(x):
|
|
return x.sin()
|
|
|
|
def f(x, y):
|
|
return control_flow.cond(x.shape[0] > 4, true_fn, false_fn, [y])
|
|
|
|
example_inputs = (
|
|
torch.ones(3, 2, 4, requires_grad=True),
|
|
torch.ones(4, requires_grad=True),
|
|
)
|
|
f(*example_inputs).sum().backward()
|
|
|
|
# Ensure no error is thrown when not running backward
|
|
res = f(*example_inputs)
|
|
|
|
# Ensure no error is thrown when not running backward
|
|
res_compiled = torch.compile(f)(*example_inputs)
|
|
self.assertEqual(res, res_compiled)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_map_functionalized_elem_alias(self):
|
|
def map_fn(x):
|
|
x.view(x.shape)
|
|
return x
|
|
|
|
def f(xs):
|
|
return control_flow.map(map_fn, xs)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4),)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is aliasing the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
def test_nested_map_cond_real(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
gm = make_fx(g, tracing_mode="real")(
|
|
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
pred = torch.tensor(False)
|
|
x = torch.randn(3, 2, 4)
|
|
y = torch.randn(4)
|
|
res = gm(pred, x, y)
|
|
self.assertEqual(res, g(pred, x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_nested_map_cond_symbolic(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
pred = torch.tensor(False)
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(pred, x, y)
|
|
self.assertEqual(res, g(pred, x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_nested_cond_map_cond_symbolic(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
def main_true_fn(pred, xs, y):
|
|
return g(pred, xs, y) * 2
|
|
|
|
def main_false_fn(pred, xs, y):
|
|
return g(pred, xs, y) + 1
|
|
|
|
def main(p, pred, xs, y):
|
|
return cond(p, main_true_fn, main_false_fn, [pred, xs, y])
|
|
|
|
gm = make_fx(main, tracing_mode="symbolic")(
|
|
torch.tensor(True), torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
p = torch.tensor(False)
|
|
pred = torch.tensor(False)
|
|
xs = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(p, pred, xs, y)
|
|
self.assertEqual(res, main(p, pred, xs, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_cond_with_sym_pred(self):
|
|
def true_fn(x):
|
|
return x + x
|
|
|
|
def false_fn(x):
|
|
return x * x
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 2, 1))
|
|
# The symbols in make_fx's shape_env should not be specialized.
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
eq = sym_size_int == 4; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None
|
|
getitem = cond[0]; cond = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
|
|
# We expect the traced graph module to work even if input size changes.
|
|
x = torch.ones(4, 3, 2)
|
|
self.assertEqual(gm(x), true_fn(x))
|
|
self.assertEqual(foo(x), true_fn(x))
|
|
|
|
def test_cond_with_unbacked_sym_pred(self):
|
|
def foo(x):
|
|
def true_fn(x):
|
|
return x + x
|
|
|
|
def false_fn(x):
|
|
return x * x
|
|
|
|
az = x.nonzero()
|
|
return cond(az.shape[0] > 3, true_fn, false_fn, (x,))
|
|
|
|
gm = make_fx(foo, tracing_mode="symbolic")(torch.randn(7))
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
nonzero = torch.ops.aten.nonzero.default(x_1)
|
|
sym_size_int = torch.ops.aten.sym_size.int(nonzero, 0); nonzero = None
|
|
gt = sym_size_int > 3; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [x_1]); gt = true_graph_0 = false_graph_0 = x_1 = None
|
|
getitem = cond[0]; cond = None
|
|
return getitem""",
|
|
)
|
|
|
|
def _check_closure_correctly_lifted(self, f, *, args, exp_res, exp_arg_num):
|
|
assert isinstance(args, (tuple, list))
|
|
self.assertEqual(f(*args), exp_res)
|
|
gm = make_fx(f)(*args)
|
|
self.assertEqual(gm(*args), exp_res)
|
|
|
|
def cnt_placeholder(gm):
|
|
return len([node for node in gm.graph.nodes if node.op == "placeholder"])
|
|
|
|
placeholder_cnts = [cnt_placeholder(mod) for mod in gm.children()]
|
|
self.assertTrue(all(cnt == exp_arg_num for cnt in placeholder_cnts))
|
|
|
|
def _check_closure_correctly_lifted_with_mutation(
|
|
self, f, closures_to_be_mutated, *, args, exp_arg_num
|
|
):
|
|
exp_res = f(*args)
|
|
self._check_closure_correctly_lifted(
|
|
f, args=args, exp_res=exp_res, exp_arg_num=exp_arg_num
|
|
)
|
|
|
|
for closure in closures_to_be_mutated:
|
|
closure.add(-1)
|
|
new_exp_res = f(*args)
|
|
|
|
self._check_closure_correctly_lifted(
|
|
f, args=args, exp_res=new_exp_res, exp_arg_num=exp_arg_num
|
|
)
|
|
|
|
def test_cond_with_tensor_closure(self):
|
|
a = torch.ones(2, 3)
|
|
b = torch.ones(2, 3) + 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
# expected branches takes [x, a, b] as input
|
|
inp = torch.randn(2, 3)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (a, b), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_with_tensor_closure_graph_module(self):
|
|
a = torch.ones(2, 3)
|
|
b = torch.ones(2, 3) + 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
# expected branches takes [x, a, b] as input
|
|
inp = torch.randn(2, 3)
|
|
|
|
gm = make_fx(foo, tracing_mode="symbolic", _allow_non_fake_inputs=True)(inp)
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
eq = sym_size_int == 4; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_tensor_constant0 = self._tensor_constant0
|
|
_tensor_constant1 = self._tensor_constant1
|
|
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1, _tensor_constant0, _tensor_constant1]); eq = true_graph_0 = false_graph_0 = x_1 = _tensor_constant0 = _tensor_constant1 = None
|
|
getitem = cond[0]; cond = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def test_cond_with_module_param_closure(self):
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.register_parameter(
|
|
"param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False)
|
|
)
|
|
self.buffer = torch.nn.Buffer(torch.ones(2, 3) + 1)
|
|
|
|
my_mode = Mod()
|
|
|
|
def true_fn(x):
|
|
return x + my_mode.param
|
|
|
|
def false_fn(x):
|
|
return x + my_mode.buffer
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
# expected both branches takes (x, param, buffer)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (my_mode.param, my_mode.buffer), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_with_module_python_scalar_closure(self):
|
|
def foo(x):
|
|
a = torch.ones(1, 1)
|
|
b = 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
res = inp + 1
|
|
# python scalar b is not lifted as input, so both branches take (x, a)
|
|
self._check_closure_correctly_lifted(
|
|
foo, args=(inp,), exp_res=res, exp_arg_num=2
|
|
)
|
|
|
|
def test_cond_nested_with_closure(self):
|
|
a = torch.ones(1, 1)
|
|
b = torch.ones(1, 1) + 1
|
|
|
|
def inner_true_fn(x):
|
|
return x + a
|
|
|
|
def inner_false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
def true_fn(x):
|
|
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
# For top-level cond, it take 3 arguments (x, a, b). Dynamo should
|
|
# realize that the nonlocal variables are same for the true and false
|
|
# branches, so it should de-dupe them.
|
|
# For second-level conds, it takes (x, a, b)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (a, b), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_nested_with_closure_graph_module(self):
|
|
a = torch.ones(1, 1)
|
|
b = torch.ones(1, 1) + 1
|
|
|
|
def inner_true_fn(x):
|
|
return x + a
|
|
|
|
def inner_false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
def true_fn(x):
|
|
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
def test_map_unfunc_boolean_tensor_for_nested_map_cond(self):
|
|
def map_fn(pred, x):
|
|
def fn(x, pred):
|
|
return control_flow.cond(pred, lambda x: x * 2, lambda x: x / 2, (x,))
|
|
|
|
return control_flow.map(fn, x, pred)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
kwargs,
|
|
)
|
|
return pytree.tree_map(
|
|
from_fun_old, func(*func_args, **func_kwargs)
|
|
)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
gm = make_fx(f_wrapper(map_fn))(
|
|
torch.tensor(True), torch.ones([2, 3], requires_grad=False)
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
body_graph_0 = self.body_graph_0
|
|
map_impl = torch.ops.higher_order.map_impl(body_graph_0, [x_1], [pred_1]); body_graph_0 = x_1 = pred_1 = None
|
|
getitem = map_impl[0]; map_impl = None
|
|
return getitem""",
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.body_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(arg1_1, true_graph_0, false_graph_0, [arg0_1]); arg1_1 = true_graph_0 = false_graph_0 = arg0_1 = None
|
|
getitem = cond[0]; cond = None
|
|
return [getitem]""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_make_fx_preserve_stack_trace_for_nodes_in_subgraph(self):
|
|
def true_fn(x):
|
|
return x + x.cos()
|
|
|
|
def false_fn(x):
|
|
return x * x.sin()
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, (x,))
|
|
|
|
inp = torch.randn([4, 3])
|
|
gm, _ = torch._dynamo.export(foo)(inp)
|
|
|
|
def run_with_interpreter(*args):
|
|
with torch.fx.traceback.preserve_node_meta():
|
|
return torch.fx.Interpreter(gm).run(*args)
|
|
|
|
new_gm = make_fx(run_with_interpreter)(inp)
|
|
|
|
checked_ops = {"add", "mul", "sin", "cos"}
|
|
checked_meta = ["source_fn_stack", "stack_trace"]
|
|
all_source_fns = collect_meta_for_filtered_nodes(gm, checked_ops, checked_meta)
|
|
new_source_fns = collect_meta_for_filtered_nodes(
|
|
new_gm, checked_ops, checked_meta
|
|
)
|
|
self.assertEqual(all_source_fns, new_source_fns)
|
|
|
|
@unittest.skipIf(
|
|
TEST_WITH_TORCHDYNAMO,
|
|
"triggers cache limit for foo and changes unique_graphs count.",
|
|
)
|
|
def test_cond_no_dynamo_cache_limit(self):
|
|
torch._dynamo.reset()
|
|
counters = torch._dynamo.utils.counters
|
|
counters.clear()
|
|
|
|
def foo(x, true_fn, false_fn):
|
|
return cond(x.sum() < 0, true_fn, false_fn, (x,))
|
|
|
|
inp = torch.ones(3, 4)
|
|
exp_out = inp.sin()
|
|
iter_n = torch._dynamo.config.cache_size_limit + 1
|
|
|
|
# Need this because Dynamo checks lambda code ID not object itself.
|
|
def make_dummy_fn(op):
|
|
exec(f"temp = lambda x: x.{op}()")
|
|
return locals()["temp"]
|
|
|
|
for _ in range(iter_n):
|
|
# each lambda has a different object id thus fails the guard
|
|
self.assertEqual(
|
|
foo(inp, make_dummy_fn("cos"), make_dummy_fn("sin")), exp_out
|
|
)
|
|
|
|
# each iteration captures a cond and a getitem from the tuple output
|
|
self.assertEqual(counters["stats"]["calls_captured"], iter_n * 2)
|
|
self.assertEqual(counters["stats"]["unique_graphs"], iter_n)
|
|
|
|
def test_cond_with_consecutive_make_fx_symbolic(self):
|
|
def true_fn(x):
|
|
return x - x.cos()
|
|
|
|
def false_fn(x):
|
|
return x + x.sin()
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inps = (torch.ones(3, 4), torch.ones(3, 5), torch.ones(5, 4), torch.ones(5, 3))
|
|
for inp in inps:
|
|
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 4))
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
eq = sym_size_int == 4; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None
|
|
getitem = cond[0]; cond = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
cos = torch.ops.aten.cos.default(arg0_1)
|
|
sub = torch.ops.aten.sub.Tensor(arg0_1, cos); arg0_1 = cos = None
|
|
return (sub,)""",
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
gm.false_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
sin = torch.ops.aten.sin.default(arg0_1)
|
|
add = torch.ops.aten.add.Tensor(arg0_1, sin); arg0_1 = sin = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def _create_test_fns_for_cond(
|
|
self, pred, inner_most_fn, operands, closure_list, nested_level
|
|
):
|
|
if nested_level == 0:
|
|
if len(closure_list) > 0:
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands) + inner_most_fn(*closure_list)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands) - inner_most_fn(*closure_list)
|
|
|
|
else:
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands)
|
|
|
|
def fn(*operands):
|
|
if len(operands) == 0 and len(closure_list) == 0:
|
|
return torch.zeros(1)
|
|
return cond(pred, true_fn, false_fn, operands)
|
|
|
|
return operands, fn
|
|
else:
|
|
args, inner_fn = self._create_test_fns_for_cond(
|
|
pred <= 0, inner_most_fn, operands, closure_list, nested_level - 1
|
|
)
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands) + inner_fn(*args)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands) - inner_fn(*args)
|
|
|
|
def fn(*operands):
|
|
if len(operands) == 0 and len(closure_list) == 0:
|
|
return torch.ones(1)
|
|
return cond(pred, true_fn, false_fn, operands)
|
|
|
|
return operands, fn
|
|
|
|
def _init_predicate(self, pred_type):
|
|
if pred_type == "bool":
|
|
return True
|
|
elif pred_type == "intTensor":
|
|
return torch.tensor(1)
|
|
elif pred_type == "floatTensor":
|
|
return torch.tensor(1.0)
|
|
elif pred_type == "boolTensor":
|
|
return torch.tensor(False)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def _init_fn(self, inner_fn_type):
|
|
if inner_fn_type == "function":
|
|
return reduce_func
|
|
elif inner_fn_type == "module":
|
|
return ReduceMod()
|
|
elif inner_fn_type == "object":
|
|
return ReduceObj()
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
@parametrize("predType", ["bool", "intTensor", "floatTensor", "boolTensor"])
|
|
@parametrize("innerFnType", ["function", "module", "object"])
|
|
@parametrize("nOperands", [0, 1])
|
|
@parametrize("nClosure", [0, 1])
|
|
@parametrize("nesting", [0, 2])
|
|
def test_cond_tracing_with_valid_inputs(
|
|
self, predType, innerFnType, nOperands, nClosure, nesting
|
|
):
|
|
pred = self._init_predicate(predType)
|
|
inner_fn = self._init_fn(innerFnType)
|
|
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
|
|
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
|
|
args, fn = self._create_test_fns_for_cond(
|
|
pred, inner_fn, operands, closure, nesting
|
|
)
|
|
eager_res = fn(*args)
|
|
for tracing_mode in ["symbolic", "fake", "real"]:
|
|
# set _allow_non_fake_inputs = True to allow fake prop through closures
|
|
with self.subTest(tracing_mode=tracing_mode):
|
|
gm = make_fx(
|
|
fn, tracing_mode=tracing_mode, _allow_non_fake_inputs=True
|
|
)(*args)
|
|
self.assertEqual(gm(*args), eager_res)
|
|
|
|
@parametrize("predType", ["boolTensor"])
|
|
@parametrize("innerFnType", ["function", "module", "object"])
|
|
@parametrize("nOperands", [1, 2])
|
|
@parametrize("nClosure", [0, 1])
|
|
@parametrize("nesting", [0])
|
|
def test_cond_vmap(self, predType, innerFnType, nOperands, nClosure, nesting):
|
|
pred = self._init_predicate(predType)
|
|
inner_fn = self._init_fn(innerFnType)
|
|
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
|
|
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
|
|
args, fn = self._create_test_fns_for_cond(
|
|
pred, inner_fn, operands, closure, nesting
|
|
)
|
|
eager_res = fn(*args)
|
|
out = torch.vmap(fn)(*args)
|
|
if nClosure == 0:
|
|
self.assertEqual(eager_res, out)
|
|
else:
|
|
self.assertEqual(eager_res, out[0])
|
|
self.assertEqual(eager_res, out[1])
|
|
|
|
def test_cond_vmap_simple(self):
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + 100,
|
|
false_fn=lambda x: x,
|
|
operands=(x,),
|
|
)
|
|
|
|
a = torch.arange(15).reshape((3, 5))
|
|
res = torch.vmap(fn, in_dims=(0,))(a)
|
|
self.assertEqual(res.shape, (3, 5))
|
|
self.assertEqual(res, a + 100)
|
|
|
|
def test_cond_vmap_multiple_inputs(self):
|
|
def fn(x, y):
|
|
return torch.cond(
|
|
pred=x.sum() < y.sum(),
|
|
true_fn=lambda x, y: x + 100,
|
|
false_fn=lambda x, y: y,
|
|
operands=(x, y),
|
|
)
|
|
|
|
a = torch.arange(15).reshape(3, 5)
|
|
b = torch.ones_like(a) + 3
|
|
res = torch.vmap(fn, in_dims=(0, 0))(a, b)
|
|
expected = torch.tensor(
|
|
[[100, 101, 102, 103, 104], [4, 4, 4, 4, 4], [4, 4, 4, 4, 4]]
|
|
)
|
|
self.assertEqual(res.shape, (3, 5))
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_cond_vmap_single_input_with_closure(self):
|
|
a = torch.ones((3, 5)) + 3
|
|
c = torch.arange(5)
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + c,
|
|
false_fn=lambda x: x - c,
|
|
operands=(x,),
|
|
)
|
|
|
|
res = torch.vmap(fn, in_dims=(0,))(
|
|
a,
|
|
)
|
|
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
|
|
res = torch.vmap(fn, in_dims=(0,))(
|
|
a,
|
|
)
|
|
self.assertEqual(a + c, res)
|
|
|
|
def test_cond_vmap_multiple_args_with_closure(self):
|
|
a = torch.ones((3, 5), dtype=torch.int64) + 3
|
|
b = torch.arange(15).reshape(3, 5)
|
|
c = torch.arange(5)
|
|
|
|
def fn(x, y):
|
|
return torch.cond(
|
|
pred=torch.tensor([False]),
|
|
true_fn=lambda x, y: x + c,
|
|
false_fn=lambda x, y: y - c,
|
|
operands=(x, y),
|
|
)
|
|
|
|
res = torch.vmap(fn)(a, b)
|
|
self.assertEqual(b - c, res)
|
|
|
|
@parametrize("nClosure", [0, 1])
|
|
def test_cond_vmap_multiple_outputs(self, nClosure):
|
|
if nClosure:
|
|
c = torch.ones(5, dtype=torch.int64) + 5
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: (x + c, x - c),
|
|
false_fn=lambda x: (x, x),
|
|
operands=(x,),
|
|
)
|
|
|
|
else:
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: (x + 1, x - 1),
|
|
false_fn=lambda x: (x, x),
|
|
operands=(x,),
|
|
)
|
|
|
|
a = torch.arange(15).reshape(3, 5)
|
|
res = torch.vmap(fn)(
|
|
a,
|
|
)
|
|
self.assertEqual(len(res), 2)
|
|
if nClosure:
|
|
self.assertEqual(res, (a + c, a - c))
|
|
else:
|
|
self.assertEqual(res, (a + 1, a - 1))
|
|
|
|
def test_vmap_vmap(self):
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + 1,
|
|
false_fn=lambda x: x - 1,
|
|
operands=(x,),
|
|
)
|
|
|
|
def wrapper(x):
|
|
return torch.vmap(fn)(x)
|
|
|
|
a = torch.ones((3, 4, 5))
|
|
res = torch.vmap(wrapper)(a)
|
|
self.assertEqual(res, a + 1)
|
|
|
|
def test_cond_trace_set__and_mutate_input(self):
|
|
def f(a, tmp):
|
|
a_view = a.view(-1)
|
|
with torch.no_grad():
|
|
a.set_(tmp)
|
|
a_view.mul_(2)
|
|
return a + tmp
|
|
|
|
inp = torch.ones(3, 3, requires_grad=True)
|
|
tmp = torch.ones(3, 3, requires_grad=True)
|
|
# graph break: torch._dynamo.exc.Unsupported: call_function DelayGraphBreakVariable() [TensorVariable()] {}
|
|
# due to set_
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
torch.cond(inp.sum() > 0, f, f, (inp, tmp))
|
|
|
|
def test_cond_trace_set__and_mutate_intermediate(self):
|
|
def f(a, tmp):
|
|
a = a.clone()
|
|
a_view = a.view(-1)
|
|
tmp = tmp.clone()
|
|
with torch.no_grad():
|
|
a.set_(tmp)
|
|
a_view.mul_(2)
|
|
return a + tmp
|
|
|
|
inp = torch.ones(3, 3, requires_grad=True)
|
|
tmp = torch.ones(3, 3, requires_grad=True)
|
|
|
|
class Mod(torch.nn.Module):
|
|
def forward(self, inp: torch.Tensor, tmp: torch.Tensor) -> torch.Tensor:
|
|
return torch.cond(inp.sum() > 0, f, f, (inp, tmp))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "cannot mutate tensors with frozen storage"
|
|
):
|
|
out = torch.compile(Mod(), backend="aot_eager")(inp, tmp)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "cannot mutate tensors with frozen storage"
|
|
):
|
|
out = torch.compile(Mod(), backend="inductor")(inp, tmp)
|
|
|
|
from torch._dynamo.testing import EagerAndRecordGraphs
|
|
|
|
backend = EagerAndRecordGraphs()
|
|
out = torch.compile(Mod(), backend=backend)(inp, tmp)
|
|
self.assertExpectedInline(
|
|
backend.graphs[0].cond_true_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, l_inp_, l_tmp_):
|
|
l_inp__1 = l_inp_
|
|
l_tmp__1 = l_tmp_
|
|
a = l_inp__1.clone(); l_inp__1 = None
|
|
a_view = a.view(-1)
|
|
tmp = l_tmp__1.clone(); l_tmp__1 = None
|
|
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
|
|
set_ = a.set_(tmp); set_ = None
|
|
mul_ = a_view.mul_(2); a_view = mul_ = None
|
|
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
|
|
add = a + tmp; a = tmp = None
|
|
return (add,)
|
|
""",
|
|
)
|
|
self.assertEqual(out, f(inp, tmp))
|
|
|
|
def test_two_hops_not_sharing_code_obj(self):
|
|
pred, args = torch.tensor(True), (torch.ones(3, 3),)
|
|
|
|
def fn1(x):
|
|
return x + 1
|
|
|
|
def fn2(x):
|
|
return x - 1
|
|
|
|
from torch._dynamo.testing import CompileCounter
|
|
|
|
# Tests rely on automatic_dynamic = True
|
|
with torch._dynamo.config.patch(automatic_dynamic_shapes=True):
|
|
cnt = CompileCounter()
|
|
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, args)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
args = (torch.randn(3, 3),)
|
|
# No recompilation
|
|
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, args)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
def cond_fn(x):
|
|
return x.sum() > 0
|
|
|
|
args = (torch.randn(4, 4),)
|
|
torch.compile(torch.while_loop, backend=cnt)(cond_fn, fn2, args)
|
|
# recompilation
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
args = (torch.randn(4, 4),)
|
|
torch.compile(torch.while_loop, backend=cnt)(cond_fn, fn2, args)
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
# With recompilation due to automatic dynamic
|
|
# This also proves that while_loop doesn't share code obj with cond
|
|
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, (torch.randn(4, 4),))
|
|
self.assertEqual(cnt.frame_count, 3)
|
|
|
|
def test_hop_raises_if_not_overriding_call(self):
|
|
class WrongHop(torch._ops.HigherOrderOperator):
|
|
pass
|
|
|
|
with self.assertRaisesRegex(TypeError, "WrongHop"):
|
|
wrong_hop = WrongHop("wrong_hop")
|
|
|
|
def test_scan_functionalized(self):
|
|
def f(init, xs):
|
|
return scan(get_scan_combine_fn("add", False), init, xs, dim=1)
|
|
|
|
example_inputs = torch.ones(5, 7, 4)
|
|
example_init = torch.ones(5, 1, 4)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(
|
|
functional_f(example_init, example_inputs), f(example_init, example_inputs)
|
|
)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_scan_functionalized_elem_mutation(self):
|
|
def add1(x, y):
|
|
x.add_(4)
|
|
return x + y, x + y
|
|
|
|
def f(init, xs):
|
|
return scan(add1, init, xs, dim=1)
|
|
|
|
example_inputs = torch.ones(5, 7, 4)
|
|
example_init = torch.ones(5, 1, 4)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"Combine_fn might be modifying the input!",
|
|
):
|
|
functional_f(example_init, example_inputs)
|
|
|
|
def add2(x, y):
|
|
y.add_(4)
|
|
return x + y, x + y
|
|
|
|
def f(init, xs):
|
|
return scan(add2, init, xs, dim=1)
|
|
|
|
example_inputs = torch.ones(5, 7, 4)
|
|
example_init = torch.ones(5, 1, 4)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"Combine_fn might be modifying the input!",
|
|
):
|
|
functional_f(example_init, example_inputs)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/126988
|
|
@xfailIfTorchDynamo
|
|
def test_scan_functionalized_elem_alias(self):
|
|
def add(x, y):
|
|
return x, x
|
|
|
|
def f(init, xs):
|
|
return scan(add, init, xs, dim=1)
|
|
|
|
example_inputs = torch.ones(5, 7, 4)
|
|
example_init = torch.ones(5, 1, 4)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "Combine_fn might be aliasing the input!"
|
|
):
|
|
functional_f(example_init, example_inputs)
|
|
|
|
|
|
_hop_schema_test_schema_types = [
|
|
"bool",
|
|
"int",
|
|
"float",
|
|
"str",
|
|
"Tensor",
|
|
"SymInt",
|
|
"SymBool",
|
|
"GraphModule",
|
|
"ScriptObj",
|
|
]
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
|
|
class TestHopSchema(TestCase):
|
|
def _get_example_val(self, ty: str):
|
|
from torch.fx.experimental.sym_node import SymNode
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
|
|
def create_symtype(cls, pytype, shape_env, val):
|
|
from torch._dynamo.source import ConstantSource
|
|
|
|
symbol = shape_env.create_symbol(
|
|
val,
|
|
source=ConstantSource(
|
|
f"__testing_hop_schema{len(shape_env.var_to_val)}"
|
|
),
|
|
)
|
|
return cls(SymNode(symbol, shape_env, pytype, hint=val))
|
|
|
|
if ty == "bool":
|
|
return True
|
|
elif ty == "int":
|
|
return 1
|
|
elif ty == "float":
|
|
return 1.0
|
|
elif ty == "str":
|
|
return "foo"
|
|
elif ty == "Tensor":
|
|
return torch.tensor(1)
|
|
elif ty == "SymInt":
|
|
shape_env = ShapeEnv()
|
|
return create_symtype(torch.SymInt, int, shape_env, 1)
|
|
elif ty == "SymBool":
|
|
shape_env = ShapeEnv()
|
|
return create_symtype(torch.SymBool, bool, shape_env, True)
|
|
elif ty == "GraphModule":
|
|
|
|
def f(x):
|
|
return x.sin()
|
|
|
|
return make_fx(f)(torch.ones(1))
|
|
elif ty == "ScriptObj":
|
|
from torch.testing._internal.torchbind_impls import (
|
|
init_torchbind_implementations,
|
|
)
|
|
|
|
init_torchbind_implementations()
|
|
foo = torch.classes._TorchScriptTesting._Foo(3, 4)
|
|
return foo
|
|
else:
|
|
raise NotImplementedError(ty)
|
|
|
|
@parametrize("schema_type", _hop_schema_test_schema_types)
|
|
def test_type_gen(self, schema_type):
|
|
from torchgen.gen_schema_utils import TypeGen
|
|
|
|
example_val = self._get_example_val(schema_type)
|
|
ty = TypeGen.from_example(example_val)
|
|
# Test the generated type can be parsed
|
|
self.assertEqual(ty.parse(str(ty)), ty)
|
|
|
|
@parametrize("schema_type", _hop_schema_test_schema_types)
|
|
def test_list_gen(self, schema_type):
|
|
from torchgen.gen_schema_utils import TypeGen
|
|
|
|
example_val = self._get_example_val(schema_type)
|
|
li1 = [example_val]
|
|
li2 = [example_val, example_val]
|
|
ty1 = TypeGen.from_example(li1)
|
|
ty2 = TypeGen.from_example(li1)
|
|
self.assertEqual(ty1.parse(str(ty1)), ty1)
|
|
self.assertEqual(ty2.parse(str(ty2)), ty2)
|
|
|
|
def test_function_schema_gen(self):
|
|
from torchgen.gen_schema_utils import FunctionSchemaGen
|
|
|
|
inps = [
|
|
(schema_type + "_v", self._get_example_val(schema_type))
|
|
for schema_type in _hop_schema_test_schema_types
|
|
]
|
|
op_name = "test_op"
|
|
schema1 = FunctionSchemaGen.from_example("test_op1", inps, torch.ones(1))
|
|
schema2 = FunctionSchemaGen.from_example(
|
|
"test_op2",
|
|
inps,
|
|
[
|
|
torch.ones(1),
|
|
],
|
|
)
|
|
schema3 = FunctionSchemaGen.from_example(
|
|
"test_op3", inps, [torch.ones(1), torch.ones(1)]
|
|
)
|
|
self.assertExpectedInline(
|
|
str(schema1),
|
|
"""test_op1(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> Tensor""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
str(schema2),
|
|
"""test_op2(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> Tensor""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
str(schema3),
|
|
"""test_op3(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> (Tensor, Tensor)""", # noqa: B950,
|
|
)
|
|
self.assertEqual(schema1.parse(str(schema1)), schema1)
|
|
self.assertEqual(schema2.parse(str(schema2)), schema2)
|
|
self.assertEqual(schema3.parse(str(schema3)), schema3)
|
|
|
|
def test_while_loop_schema_gen(self):
|
|
fn, inp = WHILE_LOOP_TESTS["simple_with_linear"]
|
|
graph = make_fx(fn)(*inp).graph
|
|
while_loop_node = next(
|
|
node
|
|
for node in graph.nodes
|
|
if node.op == "call_function"
|
|
and node.target is torch.ops.higher_order.while_loop
|
|
)
|
|
schema = torch._library.utils.hop_schema_from_fx_node(while_loop_node)
|
|
self.assertExpectedInline(
|
|
str(schema),
|
|
"""while_loop(GraphModule cond_fn, GraphModule body_fn, Tensor[2] carried_inputs, Tensor[3] additional_inputs) -> Tensor[2]""", # noqa: B950
|
|
)
|
|
self.assertEqual(schema.parse(str(schema)), schema)
|
|
|
|
|
|
instantiate_parametrized_tests(TestHopSchema)
|
|
instantiate_parametrized_tests(TestControlFlowTraced)
|
|
|
|
instantiate_parametrized_tests(TestControlFlow)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|