pytorch/torch/utils/cpp_extension.py

247 lines
9.5 KiB
Python

import imp
import os
import re
import subprocess
import sys
import sysconfig
import tempfile
import warnings
from setuptools.command.build_ext import build_ext
MINIMUM_GCC_VERSION = (4, 9)
ABI_INCOMPATIBILITY_WARNING = '''
Your compiler ({}) may be ABI-incompatible with PyTorch.
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.'''
def check_compiler_abi_compatibility(compiler):
'''
Verifies that the given compiler is ABI-compatible with PyTorch.
Arguments:
compiler (str): The compiler executable name to check (e.g. 'g++')
Returns:
False if the compiler is (likely) ABI-incompatible with PyTorch,
else True.
'''
try:
info = subprocess.check_output('{} --version'.format(compiler).split())
except Exception:
_, error, _ = sys.exc_info()
warnings.warn('Error checking compiler version: {}'.format(error))
else:
info = info.decode().lower()
if 'gcc' in info:
# Sometimes the version is given as "major.x" instead of semver.
version = re.search(r'(\d+)\.(\d+|x)', info)
if version is not None:
major, minor = version.groups()
minor = 0 if minor == 'x' else int(minor)
if (int(major), minor) >= MINIMUM_GCC_VERSION:
return True
else:
# Append the detected version for the warning.
compiler = '{} {}'.format(compiler, version.group(0))
warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
return False
class BuildExtension(build_ext):
"""A custom build extension for adding compiler-specific options."""
def build_extensions(self):
# On some platforms, like Windows, compiler_cxx is not available.
if hasattr(self.compiler, 'compiler_cxx'):
compiler = self.compiler.compiler_cxx[0]
else:
compiler = os.environ.get('CXX', 'c++')
check_compiler_abi_compatibility(compiler)
for extension in self.extensions:
extension.extra_compile_args = ['-std=c++11']
build_ext.build_extensions(self)
def include_paths():
here = os.path.abspath(__file__)
torch_path = os.path.dirname(os.path.dirname(here))
return [os.path.join(torch_path, 'lib', 'include')]
def load(name,
sources,
extra_cflags=None,
extra_ldflags=None,
extra_include_paths=None,
build_directory=None,
verbose=False):
'''
Loads a C++ PyTorch extension.
To load an extension, a Ninja build file is emitted, which is used to
compile the given sources into a dynamic library. This library is
subsequently loaded into the current Python process as a module and
returned from this function, ready for use.
By default, the directory to which the build file is emitted and the
resulting library compiled to is `<tmp>/torch_extensions`, where `<tmp>` is
the temporary folder on the current platform. This location can be
overriden in two ways. First, if the `TORCH_EXTENSIONS_DIR` environment
variable is set, it replaces `<tmp>` and all extensions will be compiled
into subfolders of this directory. Second, if the `build_directory`
argument to this function is supplied, it overrides the entire path, i.e.
the library will be compiled into that folder directly.
To compile the sources, the default system compiler (`c++`) is used, which
can be overriden by setting the CXX environment variable. To pass
additional arguments to the compilation process, `extra_cflags` or
`extra_ldflags` can be provided. For example, to compile your extension
with optimizations, pass `extra_cflags=['-O3']`. You can also use
`extra_cflags` to pass further include directories (`-I`).
Args:
name: The name of the module to build.
sources: A list of relative or absolute paths to C++ source files.
extra_cflags: optional list of compiler flags to forward to the build.
extra_ldflags: optional list of linker flags to forward to the build.
extra_include_paths: optional list of include directories to forward
to the build.
build_directory: optional path to use as build workspace.
verbose: If `True`, turns on verbose logging of load steps.
Returns:
The loaded PyTorch extension as a Python module.
'''
# Allows sources to be a single path or a list of paths.
if isinstance(sources, str):
sources = [sources]
if build_directory is None:
build_directory = _get_build_directory(name, verbose)
build_file_path = os.path.join(build_directory, 'build.ninja')
if verbose:
print('Emitting ninja build file {}...'.format(build_file_path))
# NOTE: Emitting a new ninja build file does not cause re-compilation if
# the sources did not change, so it's ok to re-emit (and it's fast).
_write_ninja_file(build_file_path, name, sources, extra_cflags or [],
extra_ldflags or [], extra_include_paths or [])
if verbose:
print('Building extension module {}...'.format(name))
_build_extension_module(name, build_directory)
if verbose:
print('Loading extension module {}...'.format(name))
return _import_module_from_library(name, build_directory)
def _get_build_directory(name, verbose):
root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
if root_extensions_directory is None:
# tempfile.gettempdir() will be /tmp on UNIX and \TEMP on Windows.
root_extensions_directory = os.path.join(tempfile.gettempdir(),
'torch_extensions')
if verbose:
print('Using {} as PyTorch extensions root...'.format(
root_extensions_directory))
build_directory = os.path.join(root_extensions_directory, name)
if not os.path.exists(build_directory):
if verbose:
print('Creating extension directory {}...'.format(build_directory))
# This is like mkdir -p, i.e. will also create parent directories.
os.makedirs(build_directory)
return build_directory
def _build_extension_module(name, build_directory):
try:
subprocess.check_output(
['ninja', '-v'], stderr=subprocess.STDOUT, cwd=build_directory)
except subprocess.CalledProcessError:
# Python 2 and 3 compatible way of getting the error object.
_, error, _ = sys.exc_info()
# error.output contains the stdout and stderr of the build attempt.
raise RuntimeError("Error building extension '{}': {}".format(
name, error.output.decode()))
def _import_module_from_library(module_name, path):
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
file, path, description = imp.find_module(module_name, [path])
# Close the .so file after load.
with file:
return imp.load_module(module_name, file, path, description)
def _write_ninja_file(path, name, sources, extra_cflags, extra_ldflags,
extra_include_paths):
try:
import ninja
except ImportError:
raise RuntimeError("Ninja is required to load C++ extensions. "
"Install it with 'pip install ninja'.")
with open(path, 'w') as build_file:
writer = ninja.Writer(build_file)
# Version 1.3 is required for the `deps` directive.
writer.variable('ninja_required_version', '1.3')
writer.variable('cxx', os.environ.get('CXX', 'c++'))
writer.newline()
# Turn into absolute paths so we can emit them into the ninja build
# file wherever it is.
sources = [os.path.abspath(file) for file in sources]
includes = [os.path.abspath(file) for file in extra_include_paths]
# include_paths() gives us the location of torch/torch.h
includes += include_paths()
# sysconfig.get_paths()['include'] gives us the location of Python.h
includes.append(sysconfig.get_paths()['include'])
cflags = ['-fPIC', '-std=c++11']
cflags += ['-I{}'.format(include) for include in includes]
cflags += extra_cflags
writer.variable('cflags', ' '.join(cflags))
ldflags = ['-shared'] + extra_ldflags
# The darwin linker needs explicit consent to ignore unresolved symbols
if sys.platform == 'darwin':
ldflags.append('-undefined dynamic_lookup')
writer.variable('ldflags', ' '.join(ldflags))
writer.newline()
# See https://ninja-build.org/build.ninja.html for reference.
writer.rule(
'compile',
command='$cxx -MMD -MF $out.d $cflags -c $in -o $out',
depfile='$out.d',
deps='gcc')
writer.newline()
writer.rule('link', command='$cxx $ldflags $in -o $out')
writer.newline()
# Emit one build rule per source to enable incremental build.
object_files = []
for source_file in sources:
# '/path/to/file.cpp' -> 'file'
file_name = os.path.splitext(os.path.basename(source_file))[0]
target = '{}.o'.format(file_name)
object_files.append(target)
writer.build(outputs=target, rule='compile', inputs=source_file)
writer.newline()
library_target = '{}.so'.format(name)
writer.build(outputs=library_target, rule='link', inputs=object_files)
writer.newline()
writer.default(library_target)
writer.close()