mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/73493 This PR enables basic support for reference modules in DBR quant. For now, the support is limited to: 1. modules that have reference versions defined only (no functions) 2. torch.qint32 dtype only Currently, the reference module logic is enabled whenever dtype is torch.qint32. This is done because this is needed the earliest for the first use case. A future PR will support more dtypes and also add the `is_reference` flag to the API. Test Plan: ``` python test/test_quantization.py TestQuantizeDBR.test_conv_int32_reference_model ``` Reviewed By: jerryzh168 Differential Revision: D34520759 Pulled By: vkuzo fbshipit-source-id: 363db715315c5c7c20962a1818330ce288948778 (cherry picked from commit 6ccdfe2889c252211f191edc49f4147f66e803a4)
352 lines
12 KiB
Python
352 lines
12 KiB
Python
"""
|
|
Utils shared by different modes of quantization (eager/graph)
|
|
"""
|
|
import warnings
|
|
import functools
|
|
import torch
|
|
from torch.ao.quantization.quant_type import QuantType, quant_type_to_str
|
|
from typing import Tuple, Any, Union, Callable
|
|
|
|
# Type for fusion patterns, it can be more complicated than the following actually,
|
|
# see pattern.md for docs
|
|
# TODO: not sure if typing supports recursive data types
|
|
Pattern = Union[Callable, Tuple[Callable, Callable], Tuple[Callable, Tuple[Callable, Callable]], Any]
|
|
|
|
# TODO: maybe rename this to MatchInputNode
|
|
class MatchAllNode:
|
|
""" A node pattern that matches all nodes, used in defining
|
|
fusion patterns in FX Graph Mode Quantization
|
|
"""
|
|
pass
|
|
|
|
module_type_list = {
|
|
torch.nn.ReLU,
|
|
torch.nn.ReLU6,
|
|
torch.nn.AdaptiveAvgPool1d,
|
|
torch.nn.AdaptiveAvgPool2d,
|
|
torch.nn.AdaptiveAvgPool3d,
|
|
torch.nn.AvgPool1d,
|
|
torch.nn.AvgPool2d,
|
|
torch.nn.AvgPool3d,
|
|
torch.nn.MaxPool1d,
|
|
torch.nn.MaxPool2d,
|
|
torch.nn.MaxPool3d,
|
|
torch.nn.Identity,
|
|
torch.nn.Hardsigmoid,
|
|
torch.nn.Sigmoid,
|
|
torch.nn.Tanh,
|
|
}
|
|
func_list = {
|
|
torch.nn.functional.adaptive_avg_pool1d,
|
|
torch.nn.functional.adaptive_avg_pool2d,
|
|
torch.nn.functional.adaptive_avg_pool3d,
|
|
torch.nn.functional.elu,
|
|
torch.nn.functional.hardswish,
|
|
torch.nn.functional.instance_norm,
|
|
torch.nn.functional.layer_norm,
|
|
torch.nn.functional.leaky_relu,
|
|
torch.nn.functional.silu,
|
|
torch.nn.functional.mish,
|
|
torch.nn.functional.dropout,
|
|
torch.nn.functional.max_pool1d,
|
|
torch.nn.functional.max_pool2d,
|
|
torch.nn.functional.max_pool3d,
|
|
torch.nn.functional.relu,
|
|
torch.nn.functional.hardtanh,
|
|
torch.nn.functional.hardtanh_,
|
|
torch.nn.functional.hardsigmoid,
|
|
torch.nn.functional.sigmoid,
|
|
torch.transpose,
|
|
torch.repeat_interleave,
|
|
torch.sigmoid,
|
|
torch.squeeze,
|
|
torch.stack,
|
|
torch.sum,
|
|
torch.tanh,
|
|
torch.unsqueeze,
|
|
torch.cat,
|
|
}
|
|
method_list = {
|
|
torch.mean,
|
|
'relu',
|
|
'relu_',
|
|
'contiguous',
|
|
'detach',
|
|
'detach_',
|
|
'hardsigmoid',
|
|
'hardsigmoid_',
|
|
'permute',
|
|
'repeat',
|
|
'repeat_interleave',
|
|
'reshape',
|
|
'resize_',
|
|
'shape',
|
|
'sigmoid',
|
|
'sigmoid_',
|
|
'size',
|
|
'squeeze',
|
|
'squeeze_',
|
|
'tanh',
|
|
'tanh_',
|
|
'transpose',
|
|
'unsqueeze',
|
|
'unsqueeze_',
|
|
'view',
|
|
}
|
|
|
|
def check_node(node, modules):
|
|
# TODO: reuse is_fixed_qparam_node after we move this function to _lower_to_native_backend.py
|
|
is_call_function = node.op == "call_function" and node.target in func_list
|
|
is_call_method = node.op == "call_method" and node.target in method_list
|
|
is_call_module = node.op == "call_module" and type(modules[str(node.target)]) in module_type_list
|
|
return is_call_function, is_call_method, is_call_module
|
|
|
|
def get_combined_dict(default_dict, additional_dict):
|
|
d = default_dict.copy()
|
|
d.update(additional_dict)
|
|
return d
|
|
|
|
def is_per_tensor(qscheme):
|
|
return qscheme == torch.per_tensor_affine or \
|
|
qscheme == torch.per_tensor_symmetric
|
|
|
|
def is_per_channel(qscheme):
|
|
return qscheme in [torch.per_channel_affine,
|
|
torch.per_channel_affine_float_qparams,
|
|
torch.per_channel_symmetric]
|
|
|
|
def getattr_from_fqn(obj: Any, fqn: str) -> Any:
|
|
"""
|
|
Given an obj and a fqn such as "foo.bar.baz", returns gm.foo.bar.baz.
|
|
"""
|
|
return functools.reduce(getattr, fqn.split("."), obj)
|
|
|
|
def get_qparam_dict(observer_or_fake_quant):
|
|
qscheme = observer_or_fake_quant.qscheme if hasattr(observer_or_fake_quant, "qscheme") else None
|
|
dtype = observer_or_fake_quant.dtype
|
|
qparams = {"qscheme": qscheme, "dtype": dtype}
|
|
|
|
if not qscheme:
|
|
return qparams
|
|
|
|
if is_per_tensor(qscheme):
|
|
qscheme = torch.per_tensor_affine
|
|
elif is_per_channel(qscheme):
|
|
# change symmetric to affine since we do not have symmetric
|
|
# quantized Tensor
|
|
if qscheme == torch.per_channel_symmetric:
|
|
qscheme = torch.per_channel_affine
|
|
qparams["axis"] = observer_or_fake_quant.ch_axis
|
|
else:
|
|
raise RuntimeError(f"Unrecognized qscheme: {qscheme}")
|
|
# update qscheme, since we don't have symmetric quant qscheme
|
|
# in quantized Tensor
|
|
qparams["qscheme"] = qscheme
|
|
|
|
scale, zero_point = observer_or_fake_quant.calculate_qparams()
|
|
qparams["scale"] = scale
|
|
qparams["zero_point"] = zero_point
|
|
|
|
return qparams
|
|
|
|
|
|
def get_swapped_custom_module_class(custom_module, custom_module_class_mapping, qconfig):
|
|
""" Get the observed/quantized custom module class that we need
|
|
to swap `custom_module` to
|
|
Input:
|
|
custom_module: input, can be an instance of either a float or observed custom module
|
|
custom_module_class_mapping: the float to observed or observed to quantized custom module class mapping
|
|
qconfig: qconfig configured for the custom module
|
|
|
|
Output:
|
|
corresponding observed/quantized custom module class for input custom module instance
|
|
"""
|
|
quant_type = get_quant_type(qconfig)
|
|
quant_type_str = quant_type_to_str(quant_type)
|
|
class_mapping = custom_module_class_mapping.get(quant_type_str, {})
|
|
assert type(custom_module) in class_mapping, "did not find corresponding observed " \
|
|
"module class for {} in mapping: {}".format(type(custom_module), class_mapping)
|
|
return class_mapping[type(custom_module)]
|
|
|
|
def activation_dtype(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
return activation.dtype
|
|
|
|
def weight_dtype(qconfig):
|
|
assert qconfig is not None
|
|
weight = qconfig.weight()
|
|
return weight.dtype
|
|
|
|
def activation_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized or not, this includes quantizing to quint8, qint8 and float16
|
|
"""
|
|
return activation_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
|
|
|
|
def activation_is_int8_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized to int8 or not, this includes quantizing to quint8, qint8
|
|
"""
|
|
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def activation_is_int32_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized to int32 or not
|
|
"""
|
|
return activation_dtype(qconfig) == torch.qint32
|
|
|
|
def weight_is_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
|
|
|
|
def weight_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be statically
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def op_is_int8_dynamically_quantized(qconfig) -> bool:
|
|
""" Given a qconfig, returns True if this op is using int8 dynamic
|
|
quantization
|
|
"""
|
|
activation_dtype, weight_dtype, activation_compute_dtype = \
|
|
get_qconfig_dtypes(qconfig)
|
|
return (
|
|
activation_dtype is torch.float and
|
|
# for now, the lines below assume fbgemm or qnnpack
|
|
weight_dtype is torch.qint8 and
|
|
activation_compute_dtype is torch.quint8
|
|
)
|
|
|
|
def get_qconfig_dtypes(qconfig):
|
|
r""" returns the qconfig tuple for qconfig:
|
|
(activation_dtype, weight_dtype, activation_compute_dtype)
|
|
"""
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
compute_dtype = activation.compute_dtype if hasattr(activation, 'compute_dtype') else None
|
|
return (activation.dtype, weight.dtype, compute_dtype)
|
|
|
|
def get_quant_type(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
static_dtypes = [torch.quint8, torch.qint8]
|
|
if weight.dtype in static_dtypes:
|
|
if activation.dtype in static_dtypes:
|
|
return QuantType.STATIC
|
|
elif hasattr(activation, 'compute_dtype') and activation.compute_dtype in static_dtypes:
|
|
return QuantType.DYNAMIC
|
|
else:
|
|
return QuantType.WEIGHT_ONLY
|
|
|
|
if weight.dtype == torch.float16:
|
|
if activation.dtype == torch.float:
|
|
return QuantType.DYNAMIC
|
|
elif activation.dtype == torch.float16:
|
|
return QuantType.STATIC
|
|
|
|
raise Exception("Unrecognized dtype combination in get_quant_type: activation({}),"
|
|
"weight({})".format(activation.dtype, weight.dtype))
|
|
|
|
def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool:
|
|
""" Checks if the given minimum and maximum values are valid, meaning that
|
|
they exist and the min value is less than the max value.
|
|
"""
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
return False
|
|
|
|
if min_val.dim() == 0 or max_val.dim() == 0:
|
|
if min_val == float("inf") and max_val == float("-inf"):
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
|
|
return False
|
|
|
|
assert min_val <= max_val, "min {} should be less than max {}".format(
|
|
min_val, max_val
|
|
)
|
|
else:
|
|
assert torch.all(
|
|
min_val <= max_val
|
|
), "min {} should be less than max {}".format(min_val, max_val)
|
|
|
|
return True
|
|
|
|
|
|
def calculate_qmin_qmax(quant_min: int, quant_max: int, has_customized_qrange: bool, dtype: torch.dtype,
|
|
reduce_range: bool) -> Tuple[int, int]:
|
|
r"""Calculates actual qmin and qmax based on the quantization range,
|
|
observer datatype and if range is reduced.
|
|
"""
|
|
if has_customized_qrange:
|
|
# This initialization here is to be resolve TorchScript compilation issues and allow
|
|
# using of refinement to decouple initial_qmin and initial_qmax from quantization range.
|
|
# The actual values of initial_qmin and initial_qmax will be reset below.
|
|
if dtype == torch.qint32:
|
|
initial_quant_min, initial_quant_max = 0, 2**31 - 1
|
|
else:
|
|
initial_quant_min, initial_quant_max = 0, 255
|
|
# The following assignment of self.qmin and self.qmax to the local variables and the if check refine the
|
|
# attribute from Optional valid integers for use, based on TorchScript's requirements.
|
|
custom_quant_min, custom_quant_max = quant_min, quant_max
|
|
if custom_quant_min is not None and custom_quant_max is not None:
|
|
initial_quant_min, initial_quant_max = (
|
|
custom_quant_min,
|
|
custom_quant_max,
|
|
)
|
|
|
|
qrange_len = initial_quant_max - initial_quant_min + 1
|
|
if dtype == torch.qint8:
|
|
assert (
|
|
0 < qrange_len <= 256
|
|
), "quantization range should be positive and not exceed the maximum bit range (=256)."
|
|
elif dtype == torch.qint32:
|
|
assert (
|
|
0 < qrange_len <= 2**31
|
|
), "quantization range should be positive and not exceed the maximum bit range (=4294967296)."
|
|
if dtype == torch.qint8:
|
|
quant_min, quant_max = -qrange_len // 2, qrange_len // 2 - 1
|
|
else:
|
|
quant_min, quant_max = 0, qrange_len - 1
|
|
if reduce_range:
|
|
quant_min, quant_max = quant_min // 2, quant_max // 2
|
|
else:
|
|
# Fallback onto default 8-bit qmin and qmax calculation if dynamic range is not used.
|
|
if dtype == torch.qint8:
|
|
if reduce_range:
|
|
quant_min, quant_max = -64, 63
|
|
else:
|
|
quant_min, quant_max = -128, 127
|
|
elif dtype == torch.quint8:
|
|
if reduce_range:
|
|
quant_min, quant_max = 0, 127
|
|
else:
|
|
quant_min, quant_max = 0, 255
|
|
elif dtype == torch.qint32:
|
|
quant_min, quant_max = -1 * (2 ** 31), (2 ** 31) - 1
|
|
else:
|
|
quant_min, quant_max = 0, 15
|
|
return quant_min, quant_max
|
|
|
|
|
|
def _parent_name(target):
|
|
"""
|
|
Turn 'foo.bar' into ['foo', 'bar']
|
|
"""
|
|
r = target.rsplit('.', 1)
|
|
if len(r) == 1:
|
|
return '', r[0]
|
|
else:
|
|
return r[0], r[1]
|