mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
### Description Across PyTorch's docstrings, both `callable` and `Callable` for variable types. The Callable should be capitalized as we are referring to the `Callable` type, and not the Python `callable()` function. ### Testing There shouldn't be any testing required. Pull Request resolved: https://github.com/pytorch/pytorch/pull/82487 Approved by: https://github.com/albanD
261 lines
8.4 KiB
Python
261 lines
8.4 KiB
Python
import math
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
from .optimizer import Optimizer
|
|
from typing import List, Optional
|
|
|
|
__all__ = ['ASGD', 'asgd']
|
|
|
|
class ASGD(Optimizer):
|
|
"""Implements Averaged Stochastic Gradient Descent.
|
|
|
|
It has been proposed in `Acceleration of stochastic approximation by
|
|
averaging`_.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 1e-2)
|
|
lambd (float, optional): decay term (default: 1e-4)
|
|
alpha (float, optional): power for eta update (default: 0.75)
|
|
t0 (float, optional): point at which to start averaging (default: 1e6)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
foreach (bool, optional): whether foreach implementation of optimizer
|
|
is used (default: None)
|
|
maximize (bool, optional): maximize the params based on the objective, instead of
|
|
minimizing (default: False)
|
|
|
|
.. _Acceleration of stochastic approximation by averaging:
|
|
https://dl.acm.org/citation.cfm?id=131098
|
|
"""
|
|
|
|
def __init__(self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0,
|
|
foreach: Optional[bool] = None, maximize: bool = False):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, lambd=lambd, alpha=alpha, t0=t0,
|
|
weight_decay=weight_decay, foreach=foreach, maximize=maximize)
|
|
super(ASGD, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super().__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('foreach', None)
|
|
group.setdefault('maximize', False)
|
|
state_values = list(self.state.values())
|
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
|
|
if not step_is_tensor:
|
|
for s in state_values:
|
|
s['step'] = torch.tensor(float(s['step']))
|
|
eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['eta'])
|
|
if not eta_is_tensor:
|
|
for s in state_values:
|
|
s['eta'] = torch.tensor(s['eta'])
|
|
mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu'])
|
|
if not mu_is_tensor:
|
|
for s in state_values:
|
|
s['mu'] = torch.tensor(float(s['mu']))
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (Callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
mus = []
|
|
axs = []
|
|
etas = []
|
|
state_steps = []
|
|
|
|
for p in group['params']:
|
|
if p.grad is not None:
|
|
params_with_grad.append(p)
|
|
if p.grad.is_sparse:
|
|
raise RuntimeError('ASGD does not support sparse gradients')
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = torch.tensor(0.)
|
|
state['eta'] = torch.tensor(group['lr'])
|
|
state['mu'] = torch.tensor(1.)
|
|
state['ax'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
|
|
mus.append(state['mu'])
|
|
axs.append(state['ax'])
|
|
etas.append(state['eta'])
|
|
state_steps.append(state['step'])
|
|
|
|
asgd(params_with_grad,
|
|
grads,
|
|
axs,
|
|
mus,
|
|
etas,
|
|
state_steps,
|
|
lambd=group['lambd'],
|
|
lr=group['lr'],
|
|
t0=group['t0'],
|
|
alpha=group['alpha'],
|
|
weight_decay=group['weight_decay'],
|
|
foreach=group['foreach'],
|
|
maximize=group['maximize'])
|
|
|
|
return loss
|
|
|
|
|
|
def asgd(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
axs: List[Tensor],
|
|
mus: List[Tensor],
|
|
etas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
|
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
|
foreach: bool = None,
|
|
maximize: bool = False,
|
|
*,
|
|
lambd: float,
|
|
lr: float,
|
|
t0: float,
|
|
alpha: float,
|
|
weight_decay: float):
|
|
r"""Functional API that performs asgd algorithm computation.
|
|
|
|
See :class:`~torch.optim.ASGD` for details.
|
|
"""
|
|
|
|
if foreach is None:
|
|
# Placeholder for more complex foreach logic to be added when value is not set
|
|
foreach = False
|
|
|
|
if foreach and torch.jit.is_scripting():
|
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
|
|
|
|
if foreach and not torch.jit.is_scripting():
|
|
func = _multi_tensor_asgd
|
|
else:
|
|
func = _single_tensor_asgd
|
|
|
|
func(params,
|
|
grads,
|
|
axs,
|
|
mus,
|
|
etas,
|
|
state_steps,
|
|
lambd=lambd,
|
|
lr=lr,
|
|
t0=t0,
|
|
alpha=alpha,
|
|
weight_decay=weight_decay,
|
|
maximize=maximize)
|
|
|
|
|
|
def _single_tensor_asgd(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
axs: List[Tensor],
|
|
mus: List[Tensor],
|
|
etas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
lambd: float,
|
|
lr: float,
|
|
t0: float,
|
|
alpha: float,
|
|
weight_decay: float,
|
|
maximize: bool):
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
grad = grad if not maximize else -grad
|
|
mu = mus[i]
|
|
ax = axs[i]
|
|
eta = etas[i]
|
|
step_t = state_steps[i]
|
|
|
|
# update step
|
|
step_t += 1
|
|
step = step_t.item()
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
# decay term
|
|
param.mul_(1 - lambd * eta.item())
|
|
|
|
# update parameter
|
|
param.add_(grad, alpha=-eta.item())
|
|
|
|
# averaging
|
|
if mu.item() != 1:
|
|
ax.add_(param.sub(ax).mul(mu))
|
|
else:
|
|
ax.copy_(param)
|
|
|
|
new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * step), alpha))
|
|
eta.copy_(new_eta)
|
|
new_mu = torch.tensor(1 / max(1, step - t0))
|
|
mu.copy_(new_mu)
|
|
|
|
|
|
def _multi_tensor_asgd(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
axs: List[Tensor],
|
|
mus: List[Tensor],
|
|
etas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
lambd: float,
|
|
lr: float,
|
|
t0: float,
|
|
alpha: float,
|
|
weight_decay: float,
|
|
maximize: bool):
|
|
|
|
if len(params) == 0:
|
|
return
|
|
|
|
if maximize:
|
|
grads = torch._foreach_neg(grads)
|
|
|
|
# update step
|
|
torch._foreach_add_(state_steps, 1)
|
|
|
|
if weight_decay != 0:
|
|
torch._foreach_add_(grads, params, alpha=weight_decay)
|
|
|
|
# decay term
|
|
eta = etas[0].item()
|
|
torch._foreach_mul_(params, 1 - lambd * eta)
|
|
|
|
# update parameter
|
|
torch._foreach_add_(params, grads, alpha=-eta)
|
|
|
|
# averaging
|
|
for i in range(len(axs)):
|
|
if mus[i].item() != 1:
|
|
axs[i].add_(params[i].sub(axs[i]).mul(mus[i]))
|
|
else:
|
|
axs[i].copy_(params[i])
|
|
|
|
# update eta and mu
|
|
for i in range(len(mus)):
|
|
new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * state_steps[i].item()), alpha))
|
|
etas[i].copy_(new_eta)
|
|
new_mu = torch.tensor(1 / max(1, state_steps[i].item() - t0))
|
|
mus[i].copy_(new_mu)
|