pytorch/torch/nn/modules/pixelshuffle.py
zabboud 53e7de4b65 Issue 112599 - fix pydocstyle errors (#113177)
Fixes #112599

Fixed errors relating to pydocstyle in the following files. The remaining errors are related to docstrings at the module level and at methods within each module, `forward()`, `reset_parameters`, `__init__` ..etc

pydocstyle torch/nn/modules/pooling.py --count
before: 49
after: 29

**remaining errors:**
```
torch/nn/modules/pooling.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/modules/pooling.py:90 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:163 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:240 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:315 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:321 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:402 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:408 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:472 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:478 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:541 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:550 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:620 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:630 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:706 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:716 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:720 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/nn/modules/pooling.py:774 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:792 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:845 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pooling.py:863 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:925 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:979 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1026 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1068 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1111 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1150 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1189 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pooling.py:1228 in public method `forward`:
        D102: Missing docstring in public method
```

pydocstyle torch/nn/modules/upsampling.py --count
before: 14
after: 7

**remaining:**
```
torch/nn/modules/upsampling.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/modules/upsampling.py:142 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/upsampling.py:156 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/upsampling.py:160 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/nn/modules/upsampling.py:166 in public method `extra_repr`:
        D102: Missing docstring in public method
torch/nn/modules/upsampling.py:216 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/upsampling.py:263 in public method `__init__`:
        D107: Missing docstring in __init__
```

pydocstyle torch/nn/modules/rnn.py --count
before: 47
after: 40

**remaining**
```
torch/nn/modules/rnn.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/modules/rnn.py:59 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:160 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/nn/modules/rnn.py:225 in public method `reset_parameters`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:230 in public method `check_input`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:242 in public method `get_expected_hidden_size`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:256 in public method `check_hidden_size`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:272 in public method `check_forward_args`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:278 in public method `permute_hidden`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:284 in public method `extra_repr`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:305 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/nn/modules/rnn.py:313 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/nn/modules/rnn.py:355 in public method `all_weights`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:471 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:478 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:481 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:503 in public method `forward` (skipping F811):
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:762 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:768 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:771 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:774 in public method `get_expected_cell_size`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:786 in public method `check_forward_args`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:798 in public method `permute_hidden`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:809 in public method `forward` (skipping F811):
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:820 in public method `forward` (skipping F811):
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1030 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1036 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1039 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1046 in public method `forward` (skipping F811):
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1054 in public method `forward` (skipping F811):
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1123 in public class `RNNCellBase`:
        D101: Missing docstring in public class
torch/nn/modules/rnn.py:1134 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1152 in public method `extra_repr`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1160 in public method `reset_parameters`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1224 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1230 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1327 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1332 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/rnn.py:1422 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/rnn.py:1427 in public method `forward`:
        D102: Missing docstring in public method
```

pydocstyle torch/nn/modules/pixelshuffle.py --count
before: 13
after: 8

**remaining:**
```
torch/nn/modules/pixelshuffle.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/modules/pixelshuffle.py:52 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pixelshuffle.py:56 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pixelshuffle.py:59 in public method `extra_repr`:
        D102: Missing docstring in public method
torch/nn/modules/pixelshuffle.py:105 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/pixelshuffle.py:109 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/pixelshuffle.py:112 in public method `extra_repr`:
        D102: Missing docstring in public method
```

pydocstyle torch/nn/modules/sparse.py --count
before: 14
after: 8

**remaining errors:**
```
torch/nn/modules/sparse.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/modules/sparse.py:124 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/sparse.py:153 in public method `reset_parameters`:
        D102: Missing docstring in public method
torch/nn/modules/sparse.py:162 in public method `forward`:
        D102: Missing docstring in public method
torch/nn/modules/sparse.py:167 in public method `extra_repr`:
        D102: Missing docstring in public method
torch/nn/modules/sparse.py:320 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/modules/sparse.py:350 in public method `reset_parameters`:
        D102: Missing docstring in public method
torch/nn/modules/sparse.py:396 in public method `extra_repr`:
        D102: Missing docstring in public method
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113177
Approved by: https://github.com/ezyang
2023-11-14 20:55:22 +00:00

114 lines
3.6 KiB
Python

from .module import Module
from .. import functional as F
from torch import Tensor
__all__ = ['PixelShuffle', 'PixelUnshuffle']
class PixelShuffle(Module):
r"""Rearrange elements in a tensor according to an upscaling factor.
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
This is useful for implementing efficient sub-pixel convolution
with a stride of :math:`1/r`.
See the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
by Shi et. al (2016) for more details.
Args:
upscale_factor (int): factor to increase spatial resolution by
Shape:
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
.. math::
C_{out} = C_{in} \div \text{upscale\_factor}^2
.. math::
H_{out} = H_{in} \times \text{upscale\_factor}
.. math::
W_{out} = W_{in} \times \text{upscale\_factor}
Examples::
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
https://arxiv.org/abs/1609.05158
"""
__constants__ = ['upscale_factor']
upscale_factor: int
def __init__(self, upscale_factor: int) -> None:
super().__init__()
self.upscale_factor = upscale_factor
def forward(self, input: Tensor) -> Tensor:
return F.pixel_shuffle(input, self.upscale_factor)
def extra_repr(self) -> str:
return f'upscale_factor={self.upscale_factor}'
class PixelUnshuffle(Module):
r"""Reverse the PixelShuffle operation.
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
:math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
See the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
by Shi et. al (2016) for more details.
Args:
downscale_factor (int): factor to decrease spatial resolution by
Shape:
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
.. math::
C_{out} = C_{in} \times \text{downscale\_factor}^2
.. math::
H_{out} = H_{in} \div \text{downscale\_factor}
.. math::
W_{out} = W_{in} \div \text{downscale\_factor}
Examples::
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
>>> input = torch.randn(1, 1, 12, 12)
>>> output = pixel_unshuffle(input)
>>> print(output.size())
torch.Size([1, 9, 4, 4])
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
https://arxiv.org/abs/1609.05158
"""
__constants__ = ['downscale_factor']
downscale_factor: int
def __init__(self, downscale_factor: int) -> None:
super().__init__()
self.downscale_factor = downscale_factor
def forward(self, input: Tensor) -> Tensor:
return F.pixel_unshuffle(input, self.downscale_factor)
def extra_repr(self) -> str:
return f'downscale_factor={self.downscale_factor}'