mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Fixes #112599 Fixed errors relating to pydocstyle in the following files. The remaining errors are related to docstrings at the module level and at methods within each module, `forward()`, `reset_parameters`, `__init__` ..etc pydocstyle torch/nn/modules/pooling.py --count before: 49 after: 29 **remaining errors:** ``` torch/nn/modules/pooling.py:1 at module level: D100: Missing docstring in public module torch/nn/modules/pooling.py:90 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:163 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:240 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:315 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:321 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:402 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:408 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:472 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:478 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:541 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:550 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:620 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:630 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:706 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:716 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:720 in public method `__setstate__`: D105: Missing docstring in magic method torch/nn/modules/pooling.py:774 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:792 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:845 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pooling.py:863 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:925 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:979 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1026 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1068 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1111 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1150 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1189 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pooling.py:1228 in public method `forward`: D102: Missing docstring in public method ``` pydocstyle torch/nn/modules/upsampling.py --count before: 14 after: 7 **remaining:** ``` torch/nn/modules/upsampling.py:1 at module level: D100: Missing docstring in public module torch/nn/modules/upsampling.py:142 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/upsampling.py:156 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/upsampling.py:160 in public method `__setstate__`: D105: Missing docstring in magic method torch/nn/modules/upsampling.py:166 in public method `extra_repr`: D102: Missing docstring in public method torch/nn/modules/upsampling.py:216 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/upsampling.py:263 in public method `__init__`: D107: Missing docstring in __init__ ``` pydocstyle torch/nn/modules/rnn.py --count before: 47 after: 40 **remaining** ``` torch/nn/modules/rnn.py:1 at module level: D100: Missing docstring in public module torch/nn/modules/rnn.py:59 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:160 in public method `__setattr__`: D105: Missing docstring in magic method torch/nn/modules/rnn.py:225 in public method `reset_parameters`: D102: Missing docstring in public method torch/nn/modules/rnn.py:230 in public method `check_input`: D102: Missing docstring in public method torch/nn/modules/rnn.py:242 in public method `get_expected_hidden_size`: D102: Missing docstring in public method torch/nn/modules/rnn.py:256 in public method `check_hidden_size`: D102: Missing docstring in public method torch/nn/modules/rnn.py:272 in public method `check_forward_args`: D102: Missing docstring in public method torch/nn/modules/rnn.py:278 in public method `permute_hidden`: D102: Missing docstring in public method torch/nn/modules/rnn.py:284 in public method `extra_repr`: D102: Missing docstring in public method torch/nn/modules/rnn.py:305 in public method `__getstate__`: D105: Missing docstring in magic method torch/nn/modules/rnn.py:313 in public method `__setstate__`: D105: Missing docstring in magic method torch/nn/modules/rnn.py:355 in public method `all_weights`: D102: Missing docstring in public method torch/nn/modules/rnn.py:471 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:478 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:481 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:503 in public method `forward` (skipping F811): D102: Missing docstring in public method torch/nn/modules/rnn.py:762 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:768 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:771 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:774 in public method `get_expected_cell_size`: D102: Missing docstring in public method torch/nn/modules/rnn.py:786 in public method `check_forward_args`: D102: Missing docstring in public method torch/nn/modules/rnn.py:798 in public method `permute_hidden`: D102: Missing docstring in public method torch/nn/modules/rnn.py:809 in public method `forward` (skipping F811): D102: Missing docstring in public method torch/nn/modules/rnn.py:820 in public method `forward` (skipping F811): D102: Missing docstring in public method torch/nn/modules/rnn.py:1030 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1036 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1039 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1046 in public method `forward` (skipping F811): D102: Missing docstring in public method torch/nn/modules/rnn.py:1054 in public method `forward` (skipping F811): D102: Missing docstring in public method torch/nn/modules/rnn.py:1123 in public class `RNNCellBase`: D101: Missing docstring in public class torch/nn/modules/rnn.py:1134 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1152 in public method `extra_repr`: D102: Missing docstring in public method torch/nn/modules/rnn.py:1160 in public method `reset_parameters`: D102: Missing docstring in public method torch/nn/modules/rnn.py:1224 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1230 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/rnn.py:1327 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1332 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/rnn.py:1422 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/rnn.py:1427 in public method `forward`: D102: Missing docstring in public method ``` pydocstyle torch/nn/modules/pixelshuffle.py --count before: 13 after: 8 **remaining:** ``` torch/nn/modules/pixelshuffle.py:1 at module level: D100: Missing docstring in public module torch/nn/modules/pixelshuffle.py:52 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pixelshuffle.py:56 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pixelshuffle.py:59 in public method `extra_repr`: D102: Missing docstring in public method torch/nn/modules/pixelshuffle.py:105 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/pixelshuffle.py:109 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/pixelshuffle.py:112 in public method `extra_repr`: D102: Missing docstring in public method ``` pydocstyle torch/nn/modules/sparse.py --count before: 14 after: 8 **remaining errors:** ``` torch/nn/modules/sparse.py:1 at module level: D100: Missing docstring in public module torch/nn/modules/sparse.py:124 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/sparse.py:153 in public method `reset_parameters`: D102: Missing docstring in public method torch/nn/modules/sparse.py:162 in public method `forward`: D102: Missing docstring in public method torch/nn/modules/sparse.py:167 in public method `extra_repr`: D102: Missing docstring in public method torch/nn/modules/sparse.py:320 in public method `__init__`: D107: Missing docstring in __init__ torch/nn/modules/sparse.py:350 in public method `reset_parameters`: D102: Missing docstring in public method torch/nn/modules/sparse.py:396 in public method `extra_repr`: D102: Missing docstring in public method ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/113177 Approved by: https://github.com/ezyang
114 lines
3.6 KiB
Python
114 lines
3.6 KiB
Python
from .module import Module
|
|
from .. import functional as F
|
|
|
|
from torch import Tensor
|
|
|
|
__all__ = ['PixelShuffle', 'PixelUnshuffle']
|
|
|
|
class PixelShuffle(Module):
|
|
r"""Rearrange elements in a tensor according to an upscaling factor.
|
|
|
|
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
|
|
to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
|
|
|
|
This is useful for implementing efficient sub-pixel convolution
|
|
with a stride of :math:`1/r`.
|
|
|
|
See the paper:
|
|
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
|
|
by Shi et. al (2016) for more details.
|
|
|
|
Args:
|
|
upscale_factor (int): factor to increase spatial resolution by
|
|
|
|
Shape:
|
|
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
|
|
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
|
|
|
|
.. math::
|
|
C_{out} = C_{in} \div \text{upscale\_factor}^2
|
|
|
|
.. math::
|
|
H_{out} = H_{in} \times \text{upscale\_factor}
|
|
|
|
.. math::
|
|
W_{out} = W_{in} \times \text{upscale\_factor}
|
|
|
|
Examples::
|
|
|
|
>>> pixel_shuffle = nn.PixelShuffle(3)
|
|
>>> input = torch.randn(1, 9, 4, 4)
|
|
>>> output = pixel_shuffle(input)
|
|
>>> print(output.size())
|
|
torch.Size([1, 1, 12, 12])
|
|
|
|
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
|
|
https://arxiv.org/abs/1609.05158
|
|
"""
|
|
|
|
__constants__ = ['upscale_factor']
|
|
upscale_factor: int
|
|
|
|
def __init__(self, upscale_factor: int) -> None:
|
|
super().__init__()
|
|
self.upscale_factor = upscale_factor
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.pixel_shuffle(input, self.upscale_factor)
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'upscale_factor={self.upscale_factor}'
|
|
|
|
|
|
class PixelUnshuffle(Module):
|
|
r"""Reverse the PixelShuffle operation.
|
|
|
|
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
|
|
in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
|
|
:math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
|
|
|
|
See the paper:
|
|
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
|
|
by Shi et. al (2016) for more details.
|
|
|
|
Args:
|
|
downscale_factor (int): factor to decrease spatial resolution by
|
|
|
|
Shape:
|
|
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
|
|
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
|
|
|
|
.. math::
|
|
C_{out} = C_{in} \times \text{downscale\_factor}^2
|
|
|
|
.. math::
|
|
H_{out} = H_{in} \div \text{downscale\_factor}
|
|
|
|
.. math::
|
|
W_{out} = W_{in} \div \text{downscale\_factor}
|
|
|
|
Examples::
|
|
|
|
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
|
|
>>> input = torch.randn(1, 1, 12, 12)
|
|
>>> output = pixel_unshuffle(input)
|
|
>>> print(output.size())
|
|
torch.Size([1, 9, 4, 4])
|
|
|
|
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
|
|
https://arxiv.org/abs/1609.05158
|
|
"""
|
|
|
|
__constants__ = ['downscale_factor']
|
|
downscale_factor: int
|
|
|
|
def __init__(self, downscale_factor: int) -> None:
|
|
super().__init__()
|
|
self.downscale_factor = downscale_factor
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.pixel_unshuffle(input, self.downscale_factor)
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'downscale_factor={self.downscale_factor}'
|