mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Fixes #112598 ## Description Fixes the docstrings on following files. ```bash pydocstyle path-to-file --count ``` | File | Count | | ------------------------------------- | ------- | | torch/nn/modules/adaptive.py | 20 -> 4 | | torch/nn/modules/channelshuffle.py | 7 -> 4 | | torch/nn/modules/conv.py | 37 -> 25 | | torch/nn/modules/distance.py | 7 -> 5 | | torch/nn/modules/dropout.py | 17 -> 7 | | torch/nn/modules/flatten.py | 10 -> 7 | | torch/nn/modules/fold.py | 11 -> 7 | | torch/nn/modules/instancenorm.py | 13 -> 1 | | torch/nn/modules/lazy.py | 11 -> 2 | | torch/nn/modules/linear.py | 20 -> 14 | | torch/nn/modules/normalization.py | 25 -> 16 | | torch/nn/modules/padding.py | 33 -> 19 | Pull Request resolved: https://github.com/pytorch/pytorch/pull/113260 Approved by: https://github.com/mikaylagawarecki
58 lines
1.4 KiB
Python
58 lines
1.4 KiB
Python
from .module import Module
|
|
from .. import functional as F
|
|
|
|
from torch import Tensor
|
|
|
|
__all__ = ['ChannelShuffle']
|
|
|
|
class ChannelShuffle(Module):
|
|
r"""Divides and rearranges the channels in a tensor.
|
|
|
|
This operation divides the channels in a tensor of shape :math:`(*, C , H, W)`
|
|
into g groups and rearranges them as :math:`(*, C \frac g, g, H, W)`,
|
|
while keeping the original tensor shape.
|
|
|
|
Args:
|
|
groups (int): number of groups to divide channels in.
|
|
|
|
Examples::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("FIXME: incorrect want")
|
|
>>> channel_shuffle = nn.ChannelShuffle(2)
|
|
>>> input = torch.randn(1, 4, 2, 2)
|
|
>>> print(input)
|
|
[[[[1, 2],
|
|
[3, 4]],
|
|
[[5, 6],
|
|
[7, 8]],
|
|
[[9, 10],
|
|
[11, 12]],
|
|
[[13, 14],
|
|
[15, 16]],
|
|
]]
|
|
>>> output = channel_shuffle(input)
|
|
>>> print(output)
|
|
[[[[1, 2],
|
|
[3, 4]],
|
|
[[9, 10],
|
|
[11, 12]],
|
|
[[5, 6],
|
|
[7, 8]],
|
|
[[13, 14],
|
|
[15, 16]],
|
|
]]
|
|
"""
|
|
|
|
__constants__ = ['groups']
|
|
groups: int
|
|
|
|
def __init__(self, groups: int) -> None:
|
|
super().__init__()
|
|
self.groups = groups
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.channel_shuffle(input, self.groups)
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'groups={self.groups}'
|