pytorch/torch/_inductor/autotune_process.py
2023-11-28 22:09:38 +00:00

617 lines
19 KiB
Python

from __future__ import annotations
import contextlib
import dataclasses
import functools
import logging
import os
import queue
import time
import warnings
from concurrent.futures import ThreadPoolExecutor
from ctypes import byref, c_size_t, c_void_p
from multiprocessing.process import BaseProcess
from multiprocessing.queues import Queue
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
TYPE_CHECKING,
Union,
)
import torch
from torch import multiprocessing
from torch._dynamo.testing import rand_strided
from torch._inductor import ir
from torch._inductor.codecache import CUDACodeCache, DLLWrapper, PyCodeCache
if TYPE_CHECKING:
from torch._inductor.select_algorithm import TritonTemplateCaller
from . import config
from .utils import do_bench
from .virtualized import V
CUDA_VISIBLE_DEVICES = "CUDA_VISIBLE_DEVICES"
EXIT_HANDLER_REGISTERED = False
log = logging.getLogger(__name__)
# Used to synchronize between parent and child processes
class Ping:
pass
class Pong:
pass
@contextlib.contextmanager
def set_cuda_visible_device(device: Optional[int]):
"""
Context manager to set the CUDA_VISIBLE_DEVICES environment variable to the
specified single device. If device is None, don't manipulate the environment.
"""
if device is None:
yield
return
current = os.environ.get(CUDA_VISIBLE_DEVICES)
os.environ[CUDA_VISIBLE_DEVICES] = str(device)
try:
yield
finally:
if current is None:
del os.environ[CUDA_VISIBLE_DEVICES]
else:
os.environ[CUDA_VISIBLE_DEVICES] = current
@dataclasses.dataclass
class TuningProcess:
"""
Abstraction for launching a helper process to benchmark kernels. Spawns
the parent process and uses multiprocessing queues to send benchmark
requests and return results.
"""
device: Optional[int] = None
process: Optional[BaseProcess] = None
request_queue: Optional[Queue[Any]] = None
response_queue: Optional[Queue[Any]] = None
@staticmethod
def process_main(
request_queue: Queue[Any],
response_queue: Queue[Any],
) -> None:
"""
Entry point for the child process.
"""
log.debug(
"Entering TuningProcess child. Visible devices = %s",
os.environ.get(CUDA_VISIBLE_DEVICES),
)
try:
TuningProcess.workloop(request_queue, response_queue)
except Exception as ex:
log.exception("Exception in TuningProcess: %s", ex)
@staticmethod
def workloop(request_queue: Queue[Any], response_queue: Queue[Any]) -> None:
"""
Work loop for the benchmarking subprocess.
"""
while True:
obj = request_queue.get()
if obj is None:
break # None is a sentinel for the child to terminate
elif isinstance(obj, Ping):
response_queue.put(Pong())
elif isinstance(obj, BenchmarkRequest):
response_queue.put(obj.benchmark())
else:
raise RuntimeError(f"Invalid request type {type(obj)}")
def valid(self) -> bool:
"""
True if the sub-process has been initialized.
"""
return (
self.process is not None
and self.request_queue is not None
and self.response_queue is not None
)
def clear(self) -> None:
"""
Reset to an uninitialized state.
"""
self.process = self.request_queue = self.response_queue = None
def initialize(self) -> None:
"""
Create child process, request/response queues, and do the warm up.
Set the environment to make only the provided GPU device visible
to the process.
"""
if self.valid():
return
# cuda runtime does not work with "fork", use "spawn" to start processes.
ctx = multiprocessing.get_context("spawn")
self.request_queue = ctx.Queue()
self.response_queue = ctx.Queue()
self.process = ctx.Process(
target=self.process_main,
args=(
self.request_queue,
self.response_queue,
),
)
assert self.process is not None
with set_cuda_visible_device(self.device):
self.process.start()
def put(self, obj: Any) -> None:
"""
Push a work item to the child process.
"""
# In case of a prior crash, ensure the subprocess is running
self.initialize()
assert self.request_queue is not None
self.request_queue.put(obj)
def get(self) -> Any:
"""
Get a response from the child process.
"""
assert self.process is not None
assert self.response_queue is not None
while True:
try:
return self.response_queue.get(timeout=1.0)
except queue.Empty:
status = self.process.exitcode
if status is None:
# child process is still running
continue
# child process crashed
self.clear()
raise
def terminate(self) -> None:
"""
Signal the child process to terminate.
"""
if self.valid():
assert self.process is not None
assert self.request_queue is not None
self.request_queue.put(None)
def wait(self) -> None:
"""
Wait for the child process to exit.
"""
if self.process is not None:
self.process.join()
self.clear()
@dataclasses.dataclass
class TuningProcessPool:
"""
Maintains a pool of TuningProcesses to benchmark kernels in parallel
across devices. By default, we create one TuningProcess per device and
set the sub-process environment to make only that device visible.
"""
processes: Optional[queue.Queue[TuningProcess]] = None
executor: Optional[ThreadPoolExecutor] = None
def initialize(self) -> None:
"""
Start the child processes.
"""
assert (self.processes is None) == (self.executor is None)
if self.processes is not None:
return
devices = self.get_device_list()
log.debug("Sub-process autotune device list: %s", devices)
# Launch the child processes and push a msg to "warm up"
self.processes = queue.Queue()
for device in devices:
p = TuningProcess(device=device)
p.initialize()
p.put(Ping())
self.processes.put(p)
# Wait for the initialization to finish
for p in self.processes.queue:
assert isinstance(p.get(), Pong)
# Use a thread pool to manage distributing work to the subprocesses.
# Threads block on an available process, so it makes sense to match
# the number of threads with the number of devices.
self.executor = ThreadPoolExecutor(max_workers=len(devices))
# Register the exit handler for the parent process so it will terminate
# the child processes.
global EXIT_HANDLER_REGISTERED
if not EXIT_HANDLER_REGISTERED:
EXIT_HANDLER_REGISTERED = True
import atexit
atexit.register(self.terminate)
def get_device_list(self) -> Sequence[Optional[int]]:
"""
Gather the list of devices to be used in the pool.
"""
if not config.autotune_multi_device:
# Don't use multiple devices
return [None]
count = torch.cuda.device_count()
# If the user specified the visible devices in the env, use those.
if CUDA_VISIBLE_DEVICES in os.environ:
devices = [int(d) for d in os.environ[CUDA_VISIBLE_DEVICES].split(",")]
assert len(devices) <= count
return devices
return list(range(count))
def terminate(self) -> None:
"""
Signal all child processes to terminate.
"""
if self.executor is not None:
self.executor.shutdown()
self.executor = None
if self.processes is not None:
for p in self.processes.queue:
p.terminate()
for p in self.processes.queue:
p.wait()
self.processes = None
def target(self, choice: TritonTemplateCaller) -> float:
"""
Entry point for the thread-pool helper threads: Wait for an open TuningProcess,
remove it from the queue, execute the benchmark in that subprocess, and return
the TuningProcess to the queue.
"""
assert choice.bmreq is not None
assert self.processes is not None
process = self.processes.get()
process.put(choice.bmreq)
try:
return process.get()
except queue.Empty:
warnings.warn(
f"Failed to benchmark choice '{choice}'. It will be ignored. "
"Please debug the root cause in case the choice can bring perf gains."
)
# set to INF so this choice will be ignored
return float("inf")
finally:
self.processes.put(process)
def benchmark(
self,
choices: List[TritonTemplateCaller],
) -> Dict[TritonTemplateCaller, float]:
"""
Benchmark each choice in a separate process.
"""
assert self.processes is not None, "Tuning process pool is not initialized"
assert self.executor is not None
results = {}
# Use a ThreadExecutorPool to spread the work across the subprocesses and
# to grab subprocesses as soon as they're free.
for choice, result in zip(choices, self.executor.map(self.target, choices)):
results[choice] = result
return results
tuning_pool = TuningProcessPool()
LayoutOrBuffer = Union[ir.Layout, ir.Buffer]
@dataclasses.dataclass
class TensorMeta:
device: torch.device
dtype: torch.dtype
sizes: torch._prims_common.ShapeType
strides: torch._prims_common.StrideType
offset: int
@classmethod
def from_irnodes(
cls, irnodes: Union[LayoutOrBuffer, Sequence[LayoutOrBuffer]]
) -> Union[TensorMeta, List[TensorMeta]]:
if isinstance(irnodes, Sequence):
result: List[Any] = [cls.from_irnodes(x) for x in irnodes]
assert all(isinstance(x, TensorMeta) for x in result)
return result
node = irnodes
if isinstance(node, ir.Layout):
node = ir.Buffer("fake", node)
dtype = node.get_dtype()
assert dtype is not None
return TensorMeta(
device=node.get_device(),
dtype=dtype,
sizes=V.graph.sizevars.size_hints(
node.get_size(),
fallback=config.unbacked_symint_fallback,
),
strides=V.graph.sizevars.size_hints(
node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
offset=V.graph.sizevars.size_hint(
node.get_layout().offset,
fallback=config.unbacked_symint_fallback,
),
)
def to_tensor(self) -> torch.Tensor:
return rand_strided(
self.sizes,
self.strides,
device=self.device,
dtype=self.dtype,
extra_size=self.offset,
)
@dataclasses.dataclass
class BenchmarkRequest:
"""
Only handle triton template benchmark for now. The extern kernel benchmark
can be done inside the same process since they usually don't cause crash.
"""
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
):
# the kernel name defined in the module
self.kernel_name = kernel_name
if isinstance(input_tensor_meta, TensorMeta):
input_tensor_meta = [input_tensor_meta]
self.input_tensor_meta = input_tensor_meta
if isinstance(output_tensor_meta, (tuple, list)):
assert len(output_tensor_meta) == 1
output_tensor_meta = output_tensor_meta[0]
self.output_tensor_meta = output_tensor_meta
self.extra_args = extra_args
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
raise NotImplementedError()
def cleanup_run_fn(self) -> None:
pass
def benchmark(
self,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
debug = log.isEnabledFor(logging.DEBUG)
if debug:
start_ts = time.time()
# create args and out tensor
if output_tensor is None:
assert len(input_tensors) == 0
input_tensors = tuple(x.to_tensor() for x in self.input_tensor_meta)
output_tensor = self.output_tensor_meta.to_tensor()
if debug:
create_tensor_elapse = time.time() - start_ts
start_ts = time.time()
fn = self.make_run_fn(*input_tensors, output_tensor=output_tensor)
if debug:
load_elapse = time.time() - start_ts
start_ts = time.time()
out = do_bench(fn)
torch.cuda.synchronize() # shake out any CUDA errors
if debug:
bench_elapse = time.time() - start_ts
log.debug(
"InChildProcess %s: load %f, create tensor %f, bench %f",
str(self),
load_elapse,
create_tensor_elapse,
bench_elapse,
)
self.cleanup_run_fn()
return out
class TestBenchmarkRequest(BenchmarkRequest):
"""
Supports unit testing. Defined in this file so that the TuningProcess
sub-process knows how to unpickle these objects.
"""
def __init__(self, value: Optional[float] = None) -> None:
self.value = value
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
if self.value is None:
raise Exception("Failed to run")
return self.value
class TritonBenchmarkRequest(BenchmarkRequest):
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
module_path: str, # the path of the module defining the triton kernel
module_cache_key: str,
grid: List[int],
num_stages: int,
num_warps: int,
):
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.module_path = module_path
self.module_cache_key = module_cache_key
self.grid = grid
self.num_stages = num_stages
self.num_warps = num_warps
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
log.debug(
"benchmark module key: %s, path: %s",
self.module_cache_key,
self.module_path,
)
run_method = getattr(mod, self.kernel_name).run
return functools.partial(
run_method,
*input_tensors,
output_tensor,
*self.extra_args,
grid=self.grid,
num_stages=self.num_stages,
num_warps=self.num_warps,
stream=torch.cuda.current_stream().cuda_stream,
)
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.module_path=}, {self.module_cache_key=}"
class CUDABenchmarkRequest(BenchmarkRequest):
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
source_code: str,
):
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.source_code = source_code
self.workspace_size: int = 0
self.workspace: Optional[torch.Tensor] = None
self.DLL: Optional[DLLWrapper] = None
self.hash_key: str = ""
self.source_file: str = ""
self.hash_key, self.source_file = CUDACodeCache.write(self.source_code, "so")
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
self.DLL, self.hash_key, self.source_file = CUDACodeCache.load(
self.source_code, "so"
)
args = [
c_void_p(tensor.data_ptr())
for tensor in list(input_tensors) + [output_tensor]
]
log.debug(
"make_run_fn: self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s",
self.kernel_name,
self.source_file,
self.hash_key,
self.DLL,
args,
self.extra_args,
)
run_method = getattr(self.DLL, self.kernel_name)
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
# Retrieve workspace_size and initialize workspace.
c_workspace_size = c_size_t()
run_method(
*args, # input ptrs and output ptrs
*self.extra_args,
byref(
c_workspace_size
), # set workspace size ptr to retrieve workspace size
None, # null workspace ptr
stream_ptr,
)
self.workspace_size = c_workspace_size.value
# TODO: Support non-zero workspace_size.
assert self.workspace_size == 0, (
"Things need to be fixed to support non-zero workspace_size: "
"1) max autotune cache needs to store workspace size; "
"2) memory allocation needs to allocate / deallocate workspace correctly; "
)
# Generate partial function.
return functools.partial(
run_method,
*args,
*self.extra_args,
None, # null workspace size ptr
None, # set workspace ptr, TODO: update it to a real ptr if workspace_size > 0
stream_ptr,
)
def cleanup_run_fn(self) -> None:
if self.DLL is not None:
self.DLL.close()
self.workspace = None
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.source_file=}, {self.hash_key=}"
def benchmark_in_sub_process(
choices: List[TritonTemplateCaller],
) -> Dict[TritonTemplateCaller, float]:
"""
Do benchmarking in a subprocess and return the perf number (latency).
"""
return tuning_pool.benchmark(choices)