pytorch/test/onnx/test_op_consistency.py
BowenBao 275a4521a9 [ONNX] Fix scalar type promotion between fp16 tensor and fp32 scalar (#113404)
Fixes https://github.com/pytorch/pytorch/issues/104594.

The reason for the exporter behavior in original posted issue is explained as follows:
ONNX model track shape related computes that were done in pytorch by python
numbers as tensor computes. This is the only way for ONNX to track them properly
since ONNX only has tensor type, otherwise the computation result will be tracked
statically as constant, and the model won't work for another input that differs in shape.

Now for type promotion logic, scalars should be treated differently with tensors.
Exporter mistook the shape related scalars as tensors in this case and incorrectly promoted.

This PR fixes the behavior and relaxes the criteria of scalar recognition. For floating point,
previously only a value from model initializer that has dtype torch.double and rank 0 is
treated as scalar. Now it is relaxed to any intermediate value, as well as for dtype torch.float.
Previous assumption was that python number is traced as torch.double dtype, which also
appears to be invalid anymore.

NOTE that this might introduce regression that a REAL 0-rank tensor is now being recognized as
scalar. The downside is the model will drop in accuracy for these cases as certain computations
will happen in lower precision data types.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113404
Approved by: https://github.com/justinchuby
2023-11-15 20:32:55 +00:00

339 lines
13 KiB
Python

# Owner(s): ["module: onnx"]
"""Test consistency between the output values of torch.onnx exported operators
and torch operators given the same inputs.
Usage:
pytest test/onnx/test_op_consistency.py
To run tests on a specific operator (e.g. torch.ceil):
pytest test/onnx/test_op_consistency.py -k ceil
pytest test/onnx/test_op_consistency.py -k nn_functional_scaled_dot_product_attention
Read more on Running and writing tests:
https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests
Note:
When new ops are supported, please scroll down to modify the EXPECTED_SKIPS_OR_FAILS and
TESTED_OPS lists. See "Modify this section"
"""
from __future__ import annotations
import copy
from typing import Optional, Tuple
import onnx_test_common
import parameterized
import torch
# For readability, these two are allowed to be imported as function
from onnx_test_common import skip, xfail
from torch.testing._internal import (
common_device_type,
common_methods_invocations,
common_utils,
)
OPS_DB = copy.deepcopy(common_methods_invocations.op_db)
# Modify this section ##########################################################
# NOTE: Modify this section as more ops are supported. The list should be sorted
# alphabetically.
#
# For example, to add a test for torch.ceil:
# 1. Add "ceil" to TESTED_OPS then run pytest.
# 2. If the test fails, fix the error or add a new entry to EXPECTED_SKIPS_OR_FAILS.
# TODO: Directly modify DecorateInfo in each OpInfo in ob_db when all ops are enabled.
# Ops to be tested for numerical consistency between onnx and pytorch
TESTED_OPS: frozenset[str] = frozenset(
[
"atan",
"atan2",
# "atleast_1d", # How to support list input?
# "atleast_2d", # How to support list input?
# "atleast_3d", # How to support list input?
"broadcast_to",
"ceil",
"expand",
"flatten",
"hstack",
"logical_not",
# "logit", # TODO: enable after fixing https://github.com/pytorch/pytorch/issues/102211
"nn.functional.scaled_dot_product_attention",
"repeat",
"round",
# "scatter_add", # TODO: enable after fixing https://github.com/pytorch/pytorch/issues/102211
# "scatter_reduce", # TODO: enable after fixing https://github.com/pytorch/pytorch/issues/102211
"sqrt",
"stft",
"t",
"tile",
"unflatten",
"vstack",
]
)
# fmt: off
# Turn off black formatting to keep the list compact
# Expected failures for onnx export.
# The list should be sorted alphabetically by op name.
# Q: When should I use fixme vs vs skip vs xfail?
# A: Prefer xfail over skip when possible.
# 2a. If a test is now failing because of xpass, because some previous errors
# are now fixed, removed the corresponding xfail.
# 2b. If a test is not failing consistently, use skip.
EXPECTED_SKIPS_OR_FAILS: Tuple[onnx_test_common.DecorateMeta, ...] = (
skip(
"atan", dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES,
reason=onnx_test_common.reason_onnx_does_not_support("Atan")
),
xfail("atan", dtypes=[torch.float64], reason=onnx_test_common.reason_onnx_runtime_does_not_support("Atan", ["f64"])),
skip(
"atan2", dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES,
reason=onnx_test_common.reason_onnx_does_not_support("Atan")
),
xfail(
"atan2", dtypes=[torch.float64],
reason=onnx_test_common.reason_onnx_runtime_does_not_support("Atan", ["f64"])
),
xfail(
"ceil", dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES,
reason=onnx_test_common.reason_onnx_does_not_support("Ceil")
),
skip("hstack", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("ConcatFromSequence")),
xfail(
"logit",
dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES,
reason=onnx_test_common.reason_onnx_does_not_support("Log", "bool, int"),
),
skip("nn.functional.scaled_dot_product_attention", opsets=[onnx_test_common.opsets_before(14)], reason="Need Trilu."),
skip("nn.functional.scaled_dot_product_attention", reason="fixme: ORT crashes on Windows, segfaults randomly on Linux"),
xfail("round", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("Round")),
xfail("round", variant_name="decimals_0", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("Round")),
xfail("round", variant_name="decimals_3", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("Round")),
xfail("round", variant_name="decimals_neg_3", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("Round")),
skip("scatter_reduce", variant_name="amin", opsets=[onnx_test_common.opsets_before(16)],
reason=onnx_test_common.reason_onnx_does_not_support("ScatterElements with reduction")),
skip("scatter_reduce", variant_name="amax", opsets=[onnx_test_common.opsets_before(16)],
reason=onnx_test_common.reason_onnx_does_not_support("ScatterElements with reduction")),
skip("scatter_reduce", variant_name="prod", opsets=[onnx_test_common.opsets_before(16)],
reason=onnx_test_common.reason_onnx_does_not_support("ScatterElements with reduction")),
xfail("scatter_reduce", variant_name="mean",
reason=onnx_test_common.reason_onnx_does_not_support("ScatterElements with reduction=mean")),
skip("scatter_reduce", variant_name="sum", opsets=[onnx_test_common.opsets_before(16)],
reason=onnx_test_common.reason_onnx_does_not_support("ScatterElements with reduction")),
xfail(
"scatter_reduce",
variant_name="sum",
dtypes=(torch.float16,),
reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=sum", "float16"),
),
xfail(
"scatter_reduce",
variant_name="prod",
dtypes=(torch.float16,),
reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=prod", "float16"),
),
xfail(
"scatter_reduce",
variant_name="amin",
dtypes=onnx_test_common.BOOL_TYPES + (torch.float16,),
reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=amin", "float16"),
),
xfail(
"scatter_reduce",
variant_name="amax",
dtypes=onnx_test_common.BOOL_TYPES + (torch.float16,),
reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=amax", "float16"),
),
xfail(
"scatter_reduce",
variant_name="mean",
reason="ONNX doesn't support reduce='mean' option",
),
skip("sqrt", dtypes=onnx_test_common.BOOL_TYPES, reason=onnx_test_common.reason_onnx_does_not_support("Sqrt")),
skip("stft", opsets=[onnx_test_common.opsets_before(17)], reason=onnx_test_common.reason_onnx_does_not_support("STFT")),
xfail("stft",
reason=onnx_test_common.reason_onnx_runtime_does_not_support("STFT", "Regression on ORT=1.15 4 percent difference")),
skip("tile", opsets=[onnx_test_common.opsets_before(13)], reason=onnx_test_common.reason_onnx_does_not_support("Tile")),
xfail("unflatten", opsets=[onnx_test_common.opsets_before(13)], reason="Helper function is needed to support legacy ops."),
skip("vstack", opsets=[onnx_test_common.opsets_before(11)],
reason=onnx_test_common.reason_onnx_does_not_support("ConcatFromSequence")),
)
# fmt: on
SKIP_XFAIL_SUBTESTS: tuple[onnx_test_common.DecorateMeta, ...] = (
skip(
"nn.functional.scaled_dot_product_attention",
matcher=lambda sample: sample.kwargs.get("dropout_p") != 0.0,
reason="dropout is random so the results do not match",
),
skip(
"repeat",
reason="Empty repeats value leads to an invalid graph",
matcher=lambda sample: not sample.args[0],
),
skip(
"scatter_reduce",
# ONNX has not include_self parameter and default is include_self=True mode
matcher=lambda sample: sample.kwargs.get("include_self") is False,
reason="ONNX does't support include_self=False option",
),
skip(
"stft",
reason="ONNX STFT does not support complex results",
matcher=lambda sample: sample.kwargs.get("return_complex") is True,
),
skip(
"tile",
matcher=lambda sample: any(dim == 0 for dim in sample.input.shape)
or not sample.input.shape,
reason="Logic not implemented for size 0 inputs in op.Reshape",
),
skip(
"unflatten",
reason="Logic not implemented for size 0 inputs in op.Reshape",
matcher=lambda sample: any(dim == 0 for dim in sample.input.shape),
),
)
# END OF SECTION TO MODIFY #####################################################
OP_WITH_SKIPPED_XFAIL_SUBTESTS = frozenset(meta.op_name for meta in SKIP_XFAIL_SUBTESTS)
ALL_OPS_IN_DB = frozenset(op_info.name for op_info in OPS_DB)
# Assert all ops in OPINFO_FUNCTION_MAPPING are in the OPS_DB
assert TESTED_OPS.issubset(ALL_OPS_IN_DB), f"{TESTED_OPS - ALL_OPS_IN_DB} not in OPS_DB"
class SingleOpModel(torch.nn.Module):
"""Test model to wrap around a single op for export."""
def __init__(self, op, kwargs):
super().__init__()
self.operator = op
self.kwargs = kwargs
def forward(self, *args):
return self.operator(*args, **self.kwargs)
def _should_skip_xfail_test_sample(
op_name: str, sample
) -> Tuple[Optional[str], Optional[str]]:
"""Returns a reason if a test sample should be skipped."""
if op_name not in OP_WITH_SKIPPED_XFAIL_SUBTESTS:
return None, None
for decorator_meta in SKIP_XFAIL_SUBTESTS:
# Linear search on ops_test_data.SKIP_XFAIL_SUBTESTS. That's fine because the list is small.
if decorator_meta.op_name == op_name:
assert decorator_meta.matcher is not None, "Matcher must be defined"
if decorator_meta.matcher(sample):
return decorator_meta.test_behavior, decorator_meta.reason
return None, None
def _get_test_class_name(cls, num, params_dict) -> str:
del cls # unused
del num # unused
return params_dict["name"]
@parameterized.parameterized_class(
[
{
"name": f"TestOnnxModelOutputConsistency_opset{opset}",
"opset_version": opset,
}
for opset in onnx_test_common.TESTED_OPSETS
],
class_name_func=_get_test_class_name,
)
class TestOnnxModelOutputConsistency(onnx_test_common._TestONNXRuntime):
"""Test output consistency between exported ONNX models and PyTorch eager mode.
This is a parameterized test suite.
"""
opset_version = -1
@common_device_type.ops(
[op for op in OPS_DB if op.name in TESTED_OPS],
allowed_dtypes=onnx_test_common.TESTED_DTYPES,
)
def test_output_match(self, device: str, dtype: torch.dtype, op):
"""Test the ONNX exporter."""
# device is provided by instantiate_device_type_tests, but we only want to run in cpu.
assert device == "cpu"
samples = op.sample_inputs(
device,
dtype,
requires_grad=False,
)
for i, cpu_sample in enumerate(samples):
inputs = (cpu_sample.input, *cpu_sample.args)
# Provide the repr to subtest because tensors are not serializable in parallel test runs
with self.subTest(
opset=self.opset_version,
sample_num=i,
inputs=repr(inputs),
kwargs=repr(cpu_sample.kwargs),
):
test_behavior, reason = _should_skip_xfail_test_sample(
op.name, cpu_sample
)
with onnx_test_common.normal_xfail_skip_test_behaviors(
test_behavior, reason
):
model = SingleOpModel(op, cpu_sample.kwargs)
model.eval()
if dtype == torch.float32:
# Relax atol and rtol for float32 based on empirical results
# The current most relaxed values are for aten::stft
rtol = 1e-5
atol = 2e-5
elif dtype == torch.float64:
# The current most relaxed values are for aten::stft
rtol = 1e-5
atol = 2e-5
else:
rtol = None
atol = None
# Run the test
self.run_test(model, inputs, rtol=rtol, atol=atol)
for opset in onnx_test_common.TESTED_OPSETS:
# The name needs to match the parameterized_class name.
test_class_name = f"TestOnnxModelOutputConsistency_opset{opset}"
onnx_test_common.add_decorate_info(
OPS_DB,
test_class_name,
"test_output_match",
opset=opset,
skip_or_xfails=EXPECTED_SKIPS_OR_FAILS,
)
common_device_type.instantiate_device_type_tests(
globals()[test_class_name], globals(), only_for="cpu"
)
if __name__ == "__main__":
common_utils.run_tests()