mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/70248 Modified loops in files under fbsource/fbcode/caffe2/ from the format ``` for(TYPE var=x0;var<x_max;x++) ``` to the format ``` for(const auto var: irange(xmax)) ``` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D32813863 fbshipit-source-id: 527244b4a2b220fdfe7f17dee3599603f492a2ca
86 lines
2.5 KiB
C++
86 lines
2.5 KiB
C++
#pragma once
|
|
|
|
#include "rebatching_queue.h"
|
|
|
|
#include "c10/util/irange.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
using RebatchingQueuePtr = std::unique_ptr<RebatchingQueue>;
|
|
|
|
class CreateRebatchingQueueOp : public Operator<CPUContext> {
|
|
public:
|
|
CreateRebatchingQueueOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator(operator_def, ws) {}
|
|
|
|
bool RunOnDevice() override {
|
|
*OperatorBase::Output<RebatchingQueuePtr>(0) =
|
|
RebatchingQueuePtr(new RebatchingQueue(
|
|
OperatorBase::GetSingleArgument<int>("capacity", 1),
|
|
OperatorBase::GetSingleArgument<int>("num_blobs", 1)));
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class EnqueueRebatchingQueueOp : public Operator<CPUContext> {
|
|
public:
|
|
EnqueueRebatchingQueueOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator(operator_def, ws),
|
|
enqueueBatch_(
|
|
OperatorBase::GetSingleArgument<bool>("enqueue_batch", false)) {}
|
|
bool RunOnDevice() override {
|
|
auto& queue = Inputs()[0]->template Get<RebatchingQueuePtr>();
|
|
CHECK(queue);
|
|
CAFFE_ENFORCE_EQ(InputSize(), queue->numBlobs() + 1);
|
|
std::vector<const Tensor*> inputTensors;
|
|
inputTensors.reserve(InputSize() - 1);
|
|
for (const auto i : c10::irange(1, InputSize())) {
|
|
inputTensors.push_back(&Input(i));
|
|
}
|
|
|
|
return enqueueBatch_ ? queue->enqueueMany(context_, inputTensors)
|
|
: queue->enqueueOne(context_, inputTensors);
|
|
}
|
|
|
|
private:
|
|
const bool enqueueBatch_;
|
|
};
|
|
|
|
class DequeueRebatchingQueueOp : public Operator<CPUContext> {
|
|
public:
|
|
DequeueRebatchingQueueOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator(operator_def, ws),
|
|
numElements_(OperatorBase::GetSingleArgument<int>("num_elements", 1)) {}
|
|
|
|
bool RunOnDevice() override {
|
|
auto& queue = Inputs()[0]->template Get<RebatchingQueuePtr>();
|
|
CHECK(queue);
|
|
|
|
std::vector<Tensor*> outputTensors;
|
|
outputTensors.reserve(OutputSize());
|
|
for (const auto i : c10::irange(OutputSize())) {
|
|
outputTensors.push_back(Output(i));
|
|
}
|
|
|
|
return queue->dequeue(context_, numElements_, outputTensors);
|
|
}
|
|
|
|
private:
|
|
int numElements_;
|
|
};
|
|
|
|
class CloseRebatchingQueueOp : public Operator<CPUContext> {
|
|
public:
|
|
CloseRebatchingQueueOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator(operator_def, ws) {}
|
|
|
|
bool RunOnDevice() override {
|
|
CAFFE_ENFORCE_EQ(InputSize(), 1);
|
|
auto& queue = Inputs()[0]->template Get<RebatchingQueuePtr>();
|
|
CAFFE_ENFORCE(queue);
|
|
queue->close();
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace caffe2
|