pytorch/caffe2/operators/remove_data_blocks_op.h
Richard Barnes 1433160a36 use irange for loops 6 (#66742)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66742

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D31705366

fbshipit-source-id: be58222426c192406a7f93c21582c3f6f2082401
2021-12-07 16:07:50 -08:00

87 lines
2.6 KiB
C++

#ifndef CAFFE2_OPERATORS_REMOVE_DATA_BLOCKS_OP_H_
#define CAFFE2_OPERATORS_REMOVE_DATA_BLOCKS_OP_H_
#include <algorithm>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class RemoveDataBlocksOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(RemoveDataBlocksOp);
USE_DISPATCH_HELPER;
bool RunOnDevice() override {
if (Input(INDICES).sizes()[0] == 0) {
Output(0)->CopyFrom(Input(0));
return true;
} else {
return DispatchHelper<TensorTypes<int, long>>::call(this, Input(INDICES));
}
}
template <typename T>
bool DoRunWithType() {
const auto& data = Input(DATA);
const auto& indices = Input(INDICES);
CAFFE_ENFORCE(data.dim() > 0, "DATA should be at leat 1-D.");
CAFFE_ENFORCE(indices.dim() == 1, "INDICES should be 1-D.");
const auto outer_size = data.sizes()[0];
const auto block_size = data.size_from_dim(1);
const auto block_size_bytes = block_size * data.dtype().itemsize();
auto indices_size = indices.sizes()[0];
const char* data_ptr = (char*)data.raw_data();
const auto* ind_ptr = indices.template data<T>();
std::vector<T> ind_vec;
for (const auto i : c10::irange(indices_size)) {
ind_vec.push_back(ind_ptr[i]);
}
std::sort(ind_vec.begin(), ind_vec.end());
CAFFE_ENFORCE(ind_vec[0] >= 0, "The min index should be larger than zero.");
CAFFE_ENFORCE(
ind_vec[indices_size - 1] < outer_size,
"The max index should be smaller than the data outer size.");
// removes duplicate indices
ind_vec.erase(std::unique(ind_vec.begin(), ind_vec.end()), ind_vec.end());
indices_size = ind_vec.size();
auto* output = Output(0);
auto shape = data.sizes().vec();
shape[0] -= indices_size;
output->Resize(shape);
char* out_ptr = (char*)output->raw_mutable_data(data.dtype());
ind_vec.insert(ind_vec.begin(), -1);
int64_t ind_vec_size = ind_vec.size();
for (const auto i : c10::irange(ind_vec_size)) {
int64_t interval_start = ind_vec[i] + 1;
int64_t interval_end =
(i == ind_vec_size - 1) ? outer_size : ind_vec[i + 1];
auto num_items = interval_end - interval_start;
context_.CopyItemsSameDevice(
data.dtype(),
num_items * block_size,
data_ptr + block_size_bytes * interval_start,
out_ptr);
out_ptr += block_size_bytes * num_items;
}
return true;
}
private:
INPUT_TAGS(DATA, INDICES);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_REMOVE_DATA_BLOCKS_OP_H_