pytorch/caffe2/operators/quantized/int8_relu_op.cc
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

38 lines
1004 B
C++

#include "caffe2/operators/quantized/int8_relu_op.h"
namespace caffe2 {
namespace {
OpSchema::Cost CostInferenceForRelu(
const OperatorDef& def,
const vector<TensorShape>& in) {
struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in);
cost.params_bytes = 0;
return cost;
}
} // namespace
REGISTER_CPU_OPERATOR(Int8Relu, int8::Int8ReluOp);
// Input: X, output: Y
OPERATOR_SCHEMA(Int8Relu)
.NumInputs(1)
.NumOutputs(1)
.Arg("Y_scale", "Output tensor quantization scale")
.Arg("Y_zero_point", "Output tensor quantization offset")
.AllowInplace({{0, 0}})
.CostInferenceFunction(CostInferenceForRelu)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Relu takes one input data (Tensor<T>) and produces one output data
(Tensor<T>) where the rectified linear function, y = max(0, x), is applied to
the tensor elementwise.
)DOC")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D input tensor")
.InheritOnnxSchema("Relu");
} // namespace caffe2