mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66742 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D31705366 fbshipit-source-id: be58222426c192406a7f93c21582c3f6f2082401
55 lines
2.1 KiB
C++
55 lines
2.1 KiB
C++
#ifndef CAFFE2_OPERATORS_CUDNN_OP_UTILS_H_
|
|
#define CAFFE2_OPERATORS_CUDNN_OP_UTILS_H_
|
|
|
|
#include "caffe2/core/cudnn_wrappers.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
// Earlier in the days Caffe sets the default cudnn workspace to 8MB. We bump
|
|
// it up to 64MB in Caffe2, as this enables the use of Winograd in many cases,
|
|
// something very beneficial to more recent CNN models.
|
|
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 64 * 1024 * 1024;
|
|
|
|
// Manually specified number of algorithms implemented in CuDNN.
|
|
// This does not have any performance implications, as we will always find the
|
|
// fastest algorithm; setting them to the right number of algorithms will enable
|
|
// us to best report the statistics when doing an exhaustive search, though.
|
|
#if CUDNN_VERSION_MIN(7, 0, 0)
|
|
// Note: Double each of these due to potential
|
|
// tensorcore + non-tensorcore versions
|
|
// which are treated as separate returned algos
|
|
static constexpr size_t kNUM_CUDNN_FWD_ALGS =
|
|
2 * CUDNN_CONVOLUTION_FWD_ALGO_COUNT;
|
|
static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS =
|
|
2 * CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
|
|
static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS =
|
|
2 * CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;
|
|
#else
|
|
static constexpr size_t kNUM_CUDNN_FWD_ALGS = 7;
|
|
static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS = 4;
|
|
static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS = 5;
|
|
#endif
|
|
|
|
namespace {
|
|
template <typename ArrayOfcudnnConvolutionAlgoPerf_t>
|
|
inline void LogCuDNNPerfStats(
|
|
const ArrayOfcudnnConvolutionAlgoPerf_t& perf_stat,
|
|
int returned_algo_count) {
|
|
VLOG(1) << "Perf result: (algo: stat, time, memory)";
|
|
for (const auto i : c10::irange(returned_algo_count)) {
|
|
const auto& stat = perf_stat[i];
|
|
VLOG(1) << stat.algo << ": " << stat.status << " " << stat.time << " "
|
|
<< stat.memory;
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
// Easier indexing into force_algo_ vector,
|
|
// shared by CudnnConvTransposeOpBase and CudnnConvOpBase to force
|
|
// usage of a particular algorithm instead of searching
|
|
enum { ALGO_FWD = 0, ALGO_WGRAD = 1, ALGO_DGRAD = 2 };
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_CUDNN_OP_UTILS_H_
|