pytorch/caffe2/operators/normalize_op.h
Richard Barnes 1433160a36 use irange for loops 6 (#66742)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66742

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D31705366

fbshipit-source-id: be58222426c192406a7f93c21582c3f6f2082401
2021-12-07 16:07:50 -08:00

106 lines
3.0 KiB
C++

#ifndef CAFFE2_OPERATORS_NORMALIZE_OP_H_
#define CAFFE2_OPERATORS_NORMALIZE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
#define KEPS 1e-12f
namespace caffe2 {
template <typename T, class Context>
class NormalizeOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit NormalizeOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
const auto& x = Input(0);
const auto* xData = x.template data<T>();
auto* y = Output(0, x.sizes(), at::dtype<T>());
auto* yData = y->template mutable_data<T>();
const auto canonical_axis = x.canonical_axis_index(
this->template GetSingleArgument<int>("axis", -1));
const int64_t m = x.dim(canonical_axis);
const size_t n = x.numel() / m;
const size_t sf = x.size_from_dim(canonical_axis + 1);
DoNormalize(xData, yData, m, n, sf);
return true;
}
private:
const T kEps_ = KEPS;
void DoNormalize(
const T* xData,
T* yData,
const int m,
const int n,
const int sf) {
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
using StridedVec =
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
using ConstStridedVec =
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
for (const auto i : c10::irange(n)) {
auto base = (i / sf) * sf * m + (i % sf);
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
auto norm = xVec.template lpNorm<2>();
norm = std::max(norm, kEps_);
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
yVec = xVec / norm;
}
}
};
template <typename T, class Context>
class NormalizeGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit NormalizeGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
const auto& x = Input(0);
const auto& gOut = Input(GRAD_OUT);
auto* gIn = Output(GRAD_IN, gOut.sizes(), at::dtype<T>());
const auto* xData = x.template data<T>();
const auto* gOutData = gOut.template data<T>();
auto* gInData = gIn->template mutable_data<T>();
const auto canonical_axis = x.canonical_axis_index(
this->template GetSingleArgument<int>("axis", -1));
const int m = x.dim32(canonical_axis);
const int n = x.numel() / m;
const int sf = x.size_from_dim(canonical_axis + 1);
DoNormalize(xData, gOutData, gInData, m, n, sf);
return true;
}
private:
const T kEps_ = KEPS;
void DoNormalize(
const T* xData,
const T* gOutData,
T* gInData,
const int m,
const int n,
const int sf);
INPUT_TAGS(INPUT, GRAD_OUT);
OUTPUT_TAGS(GRAD_IN);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_NORMALIZE_OP_H_