pytorch/torch/csrc/autograd/python_variable_indexing.cpp
James Reed 7160846c81 Only view() rhs of index_put if we need to (#9424)
Summary:
During tracing (and export) we are now introducing an unnecessary hard-coded view on the RHS of indexed assignments such as `tensor[idxs] = rhs`. This caused a regression in the PyTorch translate models because these expressions appear with variable sizes in the RHS. This change makes it so we only call view if we indeed need to strip leading 1-dimensions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9424

Reviewed By: colesbury

Differential Revision: D8838881

Pulled By: jamesr66a

fbshipit-source-id: 399e5daa7d021f4f59f6f92b9fae581f92bfc538
2018-07-14 00:10:21 -07:00

386 lines
12 KiB
C++

#include "torch/csrc/autograd/python_variable_indexing.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/THP_export.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/utils/wrap_outputs.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/utils/python_compat.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/utils/tensor_new.h"
#include "torch/csrc/utils/tensor_conversion_dispatch.h"
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/TensorOptions.h>
#include <vector>
#include <tuple>
using namespace at;
using namespace torch::autograd::utils;
namespace torch { namespace autograd {
Py_ssize_t THPVariable_length(PyObject* self) {
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (self_.dim() == 0) {
return 0;
}
return (Py_ssize_t)self_.size(0);
END_HANDLE_TH_ERRORS_RET(-1)
}
// We allow indexing by integers, slices, ellipsis, None, Variables,
// and tuples of those types. We also handle bools as if they were a
// Variable[ByteTensor].
static int64_t count_specified_dimensions(PyObject* index) {
// Count the number of indexed dimensions (everything but ellipsis and None)
int64_t count = 0;
auto size = PyTuple_GET_SIZE(index);
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* obj = PyTuple_GET_ITEM(index, i);
if (THPVariable_Check(obj)) {
auto& var = reinterpret_cast<THPVariable*>(obj)->cdata;
if (var.type().scalarType() == kByte) {
count += var.dim();
} else {
count++;
}
} else if (obj != Py_None && obj != Py_Ellipsis && obj != Py_True && obj != Py_False) {
count++;
}
}
return count;
}
[[noreturn]]
static void invalid_index(PyObject* obj) {
throw IndexError(
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
"Variables are valid indices (got %s)", Py_TYPE(obj)->tp_name);
}
static Variable applySlice(const Variable& self, int64_t dim, PyObject* slice, bool ensure_view=false) {
Py_ssize_t start, stop, step, slicelength;
auto length = self.size(dim);
if (!THPUtils_parseSlice(slice, length, &start, &stop, &step, &slicelength)) {
throw python_error();
}
if (step == 0) {
throw ValueError("step cannot be zero");
}
if (step < 0) {
// TODO: implement negative step
throw ValueError("negative step not yet supported");
}
if (!ensure_view && start == 0 && stop == length && step == 1) {
return self;
}
return self.slice(dim, start, stop, step);
}
static Variable applySelect(const Variable& self, int64_t dim, int64_t index) {
if (index == 0 && dim == 0 && self.dim() == 0) {
// Deprecated support for indexing 0-dim tensors as if they were 1-dim.
PyErr_WarnEx(PyExc_UserWarning,
"invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. "
"Use tensor.item() to convert a 0-dim tensor to a Python number", 1);
return at::alias(self);
}
int64_t size = self.size(dim);
if (index < -size || index >= size) {
throw IndexError("index %lld is out of bounds for dimension %lld with size %lld",
index, dim, size);
}
if (index < 0) {
index += size;
}
return self.select(dim, index);
}
static Variable sequenceToVariable(const Type& type, PyObject* seq) {
auto& idx_type = type.toScalarType(kLong);
return torch::utils::legacy_new_from_data(idx_type, at::nullopt, seq);
}
static Variable valueToTensor(const Type & type, PyObject* value) {
if (THPVariable_Check(value)) {
return reinterpret_cast<THPVariable*>(value)->cdata;
}
if (THPUtils_checkLong(value)) {
return type.scalarTensor(Scalar(THPUtils_unpackLong(value)));
}
if (PyFloat_Check(value)) {
return type.scalarTensor(Scalar(THPUtils_unpackDouble(value)));
}
throw TypeError("can't assign a %s to a %s", Py_TYPE(value)->tp_name, type.toString());
}
static Variable boolToIndexingTensor(const Variable& self, bool value) {
// booleans add a dimension of size 1. true indexes this dimension as if 0:, false as empty.
if (value) {
return at::zeros({1}, self.options().dtype(kLong));
} else {
return at::empty({0}, self.options().dtype(kLong));
}
}
static Variable applySlicing(const Variable& self, PyObject* index, variable_list& outIndices) {
int64_t size = PyTuple_GET_SIZE(index);
int64_t dim = 0;
int64_t specified_dims = count_specified_dimensions(index);
auto handle_var = [&](const Variable& var) {
// TODO: check scalarType
outIndices.resize(dim + 1);
outIndices[dim] = var;
dim++;
};
if (specified_dims > self.dim()) {
throw IndexError("too many indices for tensor of dimension %d", (int)self.dim());
}
Variable result = self;
for (int64_t i = 0; i < size; i++) {
PyObject* obj = PyTuple_GET_ITEM(index, i);
if (THPUtils_checkLong(obj)) {
result = applySelect(result, dim, THPUtils_unpackLong(obj));
} else if (PySlice_Check(obj)) {
result = applySlice(result, dim, obj);
#ifndef USE_TH_SIZE_ZERO_DIM
if (result.numel() == 0) {
// TODO: currently we don't have support for 0-sized dims, so slicing a dim
// to size 0 will return a size 0 tensor. for now, just shortcircuit slicing
// and return that size 0 tensor.
return result;
}
#endif
dim++;
} else if (obj == Py_Ellipsis) {
dim += self.dim() - specified_dims;
} else if (obj == Py_None) {
result = result.unsqueeze(dim);
dim++;
} else if (PyBool_Check(obj)) {
result = result.unsqueeze(dim);
handle_var(boolToIndexingTensor(result, obj == Py_True));
} else if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
auto scalar_type = var.type().scalarType();
if (var.dim() == 0 && at::isIntegralType(scalar_type)) {
if (scalar_type != at::kByte) {
result = applySelect(result, dim, THPUtils_unpackLong(obj));
} else {
result = result.unsqueeze(dim);
handle_var(boolToIndexingTensor(result, var.toCByte() != 0));
}
} else {
handle_var(var);
}
} else if (PySequence_Check(obj)) {
handle_var(sequenceToVariable(self.type(), obj));
} else {
auto index = THPObjectPtr(PyNumber_Index(obj));
if (!index) {
PyErr_Clear();
invalid_index(obj);
}
result = applySelect(result, dim, THPUtils_unpackLong(index));
}
}
return result;
}
static std::vector<Tensor> typeConvertIndices(const Variable& self, const variable_list& indices) {
std::vector<Tensor> converted_inds(indices.size());
int32_t device = self.is_cuda() ? self.get_device() : -1;
for (size_t i = 0; i < indices.size(); ++i) {
const auto &ind = indices[i];
if (ind.defined()) {
auto& new_type = ind.type().toBackend(self.type().backend());
converted_inds[i] = torch::utils::dispatch_type_conversion(ind, new_type, device, false);
} else {
converted_inds[i] = indices[i];
}
}
return converted_inds;
}
static Variable dispatch_index(const Variable& self, const variable_list& indices) {
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
AutoNoGIL no_gil;
DeviceGuard device_guard(self);
return self.index(converted_indices);
}
static Variable dispatch_index_put_(Variable& self, const variable_list& indices, const Variable& value) {
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
AutoNoGIL no_gil;
DeviceGuard device_guard(self);
return self.index_put_(converted_indices, value);
}
static bool treatSequenceAsTuple(PyObject* index) {
if (PyTuple_Check(index)) {
return true;
}
if (!PySequence_Check(index)) {
return false;
}
// This uses a heuristics from NumPy for determining whether to treat
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
//
// "At this point, we're left with a non-tuple, non-array, sequence:
// typically, a list. We use some somewhat-arbitrary heuristics from here
// onwards to decided whether to treat that list as a single index, or a
// list of indices. Backwards compatibility only takes effect for short
// sequences - otherwise we treat it like any other scalar."
auto n = PySequence_Size(index);
if (n < 0) {
// Negative size indicates a Python error in the PySequence_Size call.
PyErr_Clear();
return false;
}
if (n >= 32) {
return false;
}
for (Py_ssize_t i = 0; i < n; i++) {
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
if (!obj.get()) {
PyErr_Clear();
return false;
}
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) || PySlice_Check(obj.get())) {
return true;
}
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
return true;
}
}
return false;
}
static THPObjectPtr wrapTuple(PyObject* index) {
THPObjectPtr res;
if (treatSequenceAsTuple(index)) {
res = PySequence_Tuple(index);
} else {
res = PyTuple_Pack(1, index);
}
if (!res) throw python_error();
return res;
}
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
DeviceGuard device_guard(self_);
// handle simple types: integers, slices, ellipsis
if (index == Py_None) {
return wrap(self_.unsqueeze(0));
} else if (index == Py_Ellipsis) {
return wrap(at::alias(self_));
} else if (THPUtils_checkLong(index)) {
return wrap(applySelect(self_, 0, THPUtils_unpackLong(index)));
} else if (PySlice_Check(index)) {
return wrap(applySlice(self_, 0, index, true));
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
if (variableIndices.empty()) {
if (sliced.is_same(self_)) {
// ensure we return a shallow copy for things like x[...]
sliced = at::alias(sliced);
}
return wrap(sliced);
}
// indexing by tensors ("advanced" indexing)
return wrap(dispatch_index(sliced, variableIndices));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// To match numpy semantics:
// As a special case for backwards compatibility,
// strip away unit dimensions from the left of 'src'
static IntList slicePrefix1sSize(IntList sizes) {
size_t first_non1_src = sizes.size();
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] != 1) {
first_non1_src = i;
break;
}
}
return sizes.slice(first_non1_src);
}
static void copy_to(Variable dst, const Variable& src) {
Tensor b_src;
IntList sliced_src_sizes = slicePrefix1sSize(src.sizes());
std::tie(b_src) = expand_inplace(dst, src.view(sliced_src_sizes), "setitem");
dst.copy_(b_src);
}
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
DeviceGuard device_guard(self_);
auto value = valueToTensor(self_.type(), py_value);
// handle simple types: integers, slices, ellipsis, bool
if (index == Py_False) {
// do nothing for false (technically we should check the size, but we don't have
// real 0-sized shapes.
return 0;
} else if (index == Py_Ellipsis) {
copy_to(self_, value);
return 0;
} else if (index == Py_None || index == Py_True) {
copy_to(self_.unsqueeze(0), value);
return 0;
} else if (THPUtils_checkLong(index)) {
copy_to(applySelect(self_, 0, THPUtils_unpackLong(index)), value);
return 0;
} else if (PySlice_Check(index)) {
copy_to(applySlice(self_, 0, index), value);
return 0;
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
if (variableIndices.empty()) {
copy_to(sliced, value);
return 0;
}
IntList slicedValueSizes = slicePrefix1sSize(value.sizes());
torch::autograd::Variable valuesSliced;
if (!value.sizes().equals(slicedValueSizes)) {
valuesSliced = value.view(slicedValueSizes);
} else {
valuesSliced = value;
}
dispatch_index_put_(sliced, variableIndices, valuesSliced);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
}} // namespace torch::autograd