pytorch/torch/_inductor/ops_handler.py
Jason Ansel 71498aeae3 [inductor] Refactor op handlers part 2 (#146252)
This replaces the `__getattr__()` pattern used in (some) OpHandlers with a `DefaultHandler` class that has an implementation of every op that calls `self._default()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146252
Approved by: https://github.com/yanboliang
2025-02-08 18:00:00 +00:00

1213 lines
33 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import itertools
import re
import warnings
from typing import (
Any,
Callable,
Literal,
NamedTuple,
Optional,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import Protocol
from unittest.mock import patch
import sympy
import torch
import torch.utils._pytree as pytree
from ..utils._ordered_set import OrderedSet
from .utils import IndentedBuffer, reduction_num_outputs, sympy_index_symbol, sympy_str
T = TypeVar("T")
StoreMode = Optional[Literal["atomic_add"]]
ReductionType = Literal[
"argmax",
"argmin",
"welford_reduce",
"welford_combine",
"any",
"max",
"min",
"prod",
"sum",
"xor_sum",
]
def _arg_str(a: object) -> str:
if isinstance(a, sympy.Expr):
return sympy_str(a)
return str(a)
# NB: This is not done as a parent class, because our ops handlers
# implementations make heavy use of __getattr__ magic, and pre-existing
# stubs for methods would interfere with this mechanism.
#
# See OpDecompositions for superclass that desugars operations like reciprocal/square.
class OpsHandler(Protocol[T]):
"""
Protocol describing the set of valid operations on ``torch._inductor.virtualized.ops``,
as well as the contract for op handlers. The type T signifies the domain
of the abstract analysis AKA what all the functions return / take as arguments
anywhere compute occurs.
While these operators are typically dtype polymorphic (e.g., you can use mul
on both integers and floats), they do NOT do promotion and usually return the
same dtype as the input. You are expected to have handled type promotion
during ATen decompositions. Most operators correspond exactly to pointwise
operations as defined by torch, so when in doubt about semantics, check the
corresponding torch documentation. These are all scalar operations (so they
are defined to operate on a single element at a time.)
For convenience, many operators take a src_dtype which indicates what the dtype
of the input argument is. Although in principle this can be derived by an
analysis, providing this for ops where it is useful helps avoid having to repeatedly
recompute dtype in code generation.
Note that this often describes a class of static methods, for stateless
ops handlers.
Handlers are often defined using metaprogramming (e.g. _initialize_pointwise_overrides),
which means you will get type errors if you subclass OpsHandler since mypy doesn't know
about the methods added via metaprogramming and thinks the class is still abstract.
Instead, you should add a block like:
if TYPE_CHECKING:
class _typecheck_TritonKernelOverrides(TritonKernelOverrides, OpsHandler[str]):
pass # mypy will error if we got any of the signatures wrong
Which will check the signatures of non-meta-programmed methods and gives decent error messages.
Some older parts of the code use a pattern like:
def _typecheck_KernelFormatterHandler(h: KernelFormatterHandler) -> OpsHandler[str]:
return h
This pattern only works if the class defines a __getattr__ method, which we are moving away from.
Additionally, this pattern generates horrible error messages if the signatures are wrong.
It gives zero information about what the problem is, which makes the pattern harmful.
Instead of that, we have tests in test/inductor/test_op_completeness.py which check that all
operators are implemented after all the metaprogramming has run.
"""
def constant(self, value: Union[bool, float, int], dtype: torch.dtype) -> T:
"""Produces a scalar constant of type dtype."""
...
def load_seed(self, name: str, offset: T) -> T:
"""Computes inductor_prims.lookup_seed."""
...
def rand(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="rand". offset has dtype int32."""
...
def randn(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="randn". offset has dtype int32."""
...
def randint64(self, seed: T, offset: T, low: T, high: T) -> T:
"""Computes inductor_prims.randint. offset has dtype int32."""
...
def masked(self, mask: T, body: Callable[[], T], other: T) -> T:
"""
Computes body, but only perform loads/stores if the boolean mask
evaluates to true. For example, you would use this if you needed to
perform an indirect load that may not be valid on some elements;
without masking, invalid accesses can cause IMAs. When mask is true,
the result is the result of body; otherwise it is other. Here, `other`
needs to be a constant.
Contrast this with ops.where, which can multiplex between two values
that have been unconditionally computed.
"""
...
def where(self, condition: T, input: T, other: T) -> T:
"""
Computes torch.where: when condition is true, return input; otherwise return other.
"""
...
def index_expr(self, expr: sympy.Expr, dtype: torch.dtype) -> T:
"""
Converts a sympy expression into a scalar of type dtype. expr is typically
an indexing expression, thus the name; however, it can also be used in
non-indexing situations.
"""
...
def to_dtype(
self,
x: T,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types: bool = True,
) -> T:
"""
Convert x to dtype. src_dtype can be optionally set to specify what the original
dtype of x was, which can improve code generation (used by torch to(dtype=dtype)).
"""
...
def trunc_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with truncation semantics (similar to how the int
constructor works in Python). In Inductor codegen, this just decays
to trunc and then to_dtype, but this composite operation helps
roundtrips for Sympy evaluation.
dtype is taken as an explicit parameter because the desired output
dtype is typically the index dtype, which may vary between int32 and
int64 depending on if we've shown that all the indexing operations can
be done in int32.
"""
...
def ceil_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
...
def floor_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
...
def round_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with round-to-even semantics. See also trunc_to_int.
"""
...
def to_dtype_bitcast(self, x: T, dtype: torch.dtype, src_dtype: torch.dtype) -> T:
"""
Reinterpret cast x to dtype (reinterpreting the bits in memory as another dtype.)
src_dtype must be the original type of x.
"""
...
def identity(self, x: T) -> T:
"""
Returns x as is. This is used to trigger CSE.
"""
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operations are only available in a "kernel" context. Check
# torch._inductor.codegen.common.CSEProxy for their typical implementation
# in op handler (routing to their respective implementations in the kernel
# handler)
#
# Importantly, inside a kernel, indexing and mask variables are available
# in scope, which are typically used by sympy.Expr indexing.
def indirect_indexing(
self, x: T, size: sympy.Expr, check: bool = True, wrap_neg=True
) -> sympy.Expr:
"""
Convert an integral x into a sympy.Expr that can be subsequently used in
indexing computation. 'size' represents an upper bound on what valid
indexes can be; when 'check' is True, we check that the x is in bounds.
NB: This is typically mandatory to implement for any analysis, because you
MUST return a valid sympy.Expr of some sort (even if it's a meaningless symbol).
"""
...
def load(self, name: str, index: sympy.Expr) -> T:
"""
Load from the memory location 'name', offset by some indexing expression 'index'.
"""
...
def store(
self,
name: str,
index: sympy.Expr,
value: T,
mode: StoreMode = None,
) -> None:
"""
Store 'value' to the memory location 'name' offset by 'expr'. If
specified, 'mode' can require the store to be an atomic addition.
"""
...
# TODO: Better explain how the "collective" semantics of these ops;
# remember that the input value is a scalar, you can't reduce on it in the
# traditional sense!
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: T,
) -> Union[T, tuple[T, ...]]:
"""
Perform a 'reduction_type' reduction on 'value' of dtype 'src_dtype',
using 'dtype' as the accumulation dtype for the reduction. The result
is an intermediate computation which should be stored to the final
location using 'ops.store_reduction'.
Valid reduction types are . For Welford reduction types, this
function returns multiple outputs; consult reduction_num_outputs to
determine the amount in metaprogramming applications.
"""
...
# TODO: in practice, this seems to actually return None, but not returning
# a T makes common __getattr__ idioms not type correctly. Figure out if
# this should be returning something.
def store_reduction(self, name: str, index: sympy.Expr, value: T) -> None:
"""
Store the fully accumulated result of 'reduction' to the memory
location 'name' offset by 'expr'.
"""
...
def scan(
self,
dtypes: tuple[torch.dtype, ...],
combine_fn: Callable[[tuple[T, ...], tuple[T, ...]], tuple[T, ...]],
values: tuple[T, ...],
) -> tuple[T, ...]:
"""
Perform an associative scan on 'value'.
"""
# TODO: Improve the description with some pseudocode
...
def sort(
self,
dtypes: tuple[torch.dtype, ...],
values: tuple[T, ...],
stable: bool,
descending: bool,
) -> tuple[T, ...]:
"""
Sort values along the reduction dimension.
"""
...
def bucketize(
self,
values: T,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
# See [Note: Inductor bucketize op]
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The following ops have semantics that correspond exactly to the torch
# operation with the same corresponding name.
def abs(self, x0: T) -> T:
...
def exp(self, x0: T) -> T:
...
def exp2(self, x0: T) -> T:
...
def expm1(self, x0: T) -> T:
...
def sqrt(self, x0: T) -> T:
...
def relu(self, x0: T) -> T:
...
def minimum(self, x0: T, x1: T) -> T:
...
def maximum(self, x0: T, x1: T) -> T:
...
def cos(self, x0: T) -> T:
...
def sin(self, x0: T) -> T:
...
def lgamma(self, x0: T) -> T:
...
def erf(self, x0: T) -> T:
...
def cosh(self, x0: T) -> T:
...
def sinh(self, x0: T) -> T:
...
def acos(self, x0: T) -> T:
...
def acosh(self, x0: T) -> T:
...
def asin(self, x0: T) -> T:
...
def asinh(self, x0: T) -> T:
...
def atan2(self, x0: T, x1: T) -> T:
...
def atan(self, x0: T) -> T:
...
def atanh(self, x0: T) -> T:
...
def copysign(self, x0: T, x1: T) -> T:
...
def erfc(self, x0: T) -> T:
...
def erfinv(self, x0: T) -> T:
...
def frexp(self, x0: T):
...
def hypot(self, x0: T, x1: T) -> T:
...
def log10(self, x0: T) -> T:
...
def log2(self, x0: T) -> T:
...
def nextafter(self, x0: T, x1: T) -> T:
...
def logical_and(self, x0: T, x1: T) -> T:
...
def logical_not(self, x0: T) -> T:
...
def logical_or(self, x0: T, x1: T) -> T:
...
def logical_xor(self, x0: T, x1: T) -> T:
...
def bitwise_and(self, x0: T, x1: T) -> T:
...
def bitwise_not(self, x0: T) -> T:
...
def bitwise_or(self, x0: T, x1: T) -> T:
...
def bitwise_xor(self, x0: T, x1: T) -> T:
...
def bitwise_left_shift(self, x0: T, x1: T) -> T:
...
def bitwise_right_shift(self, x0: T, x1: T) -> T:
...
def rsqrt(self, x0: T) -> T:
...
def log1p(self, x0: T) -> T:
...
def tan(self, x0: T) -> T:
...
def tanh(self, x0: T) -> T:
...
def sigmoid(self, x0: T) -> T:
...
def signbit(self, x0: T) -> T:
...
def fmod(self, x0: T, x1: T) -> T:
...
def log(self, x0: T) -> T:
...
def isinf(self, x0: T) -> T:
...
def isnan(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
# This rounds half to even to break ties
def round(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def floor(self, x0: T) -> T:
...
def sign(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def trunc(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def ceil(self, x0: T) -> T:
...
def neg(self, x0: T) -> T:
...
def reciprocal(self, x0: T) -> T:
...
def eq(self, x0: T, x1: T) -> T:
...
def ne(self, x0: T, x1: T) -> T:
...
def lt(self, x0: T, x1: T) -> T:
...
def gt(self, x0: T, x1: T) -> T:
...
def le(self, x0: T, x1: T) -> T:
...
def ge(self, x0: T, x1: T) -> T:
...
def add(self, x0: T, x1: T) -> T:
...
def sub(self, x0: T, x1: T) -> T:
...
def mul(self, x0: T, x1: T) -> T:
...
# NB: this returns a float, like the torch operation
def pow(self, x0: T, x1: T) -> T:
...
def and_(self, x0: T, x1: T) -> T:
...
def or_(self, x0: T, x1: T) -> T:
...
def xor(self, x0: T, x1: T) -> T:
...
# These are metaprogrammed by MockHandler._init_cls
def lshift(self, x0: T, x1: T) -> T:
...
def rshift(self, x0: T, x1: T) -> T:
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These are "special" operators. These only exist if the target
# language actually supports the operator. Keep this in sync with
# pointwise_overrides_data.
def airy_ai(self, x: T) -> T:
...
def bessel_j0(self, x: T) -> T:
...
def bessel_j1(self, x: T) -> T:
...
def bessel_y0(self, x: T) -> T:
...
def bessel_y1(self, x: T) -> T:
...
def digamma(self, x: T) -> T:
...
def erfcx(self, x: T) -> T:
...
def fma(self, x: T, y: T, z: T) -> T:
...
def igamma(self, x: T, y: T) -> T:
...
def igammac(self, x: T, y: T) -> T:
...
def gammainc(self, x: T, y: T) -> T:
...
def gammaincc(self, x: T, y: T) -> T:
...
def i0(self, x: T) -> T:
...
def i0e(self, x: T) -> T:
...
def i1(self, x: T) -> T:
...
def i1e(self, x: T) -> T:
...
def log_ndtr(self, x: T) -> T:
...
def modified_bessel_i0(self, x: T) -> T:
...
def modified_bessel_i1(self, x: T) -> T:
...
def modified_bessel_k0(self, x: T) -> T:
...
def modified_bessel_k1(self, x: T) -> T:
...
def ndtr(self, x: T) -> T:
...
def ndtri(self, x: T) -> T:
...
def polygamma(self, x: T, y: T) -> T:
...
def scaled_modified_bessel_k0(self, x: T) -> T:
...
def scaled_modified_bessel_k1(self, x: T) -> T:
...
def spherical_bessel_j0(self, x: T) -> T:
...
def zeta(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_t(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_u(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_v(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_w(self, x: T, y: T) -> T:
...
def legendre_polynomial_p(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_t(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_u(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_v(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_w(self, x: T, y: T) -> T:
...
def hermite_polynomial_h(self, x: T, y: T) -> T:
...
def hermite_polynomial_he(self, x: T, y: T) -> T:
...
def laguerre_polynomial_l(self, x: T, y: T) -> T:
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operators are a bit special, because they are conventionally
# natively supported in both Python and C, but the semantics differ so
# care must be taken
def truncdiv(self, x0: T, x1: T) -> T:
"""C-style trunc division between integers only. Computes the true
division of two numbers and rounds the result to zero.
"""
...
def floordiv(self, x0: T, x1: T) -> T:
"""Python-style floor division between integers only. Computes the
true division of two numbers and floors the result. If you want
floor division for floats, do regular truediv and floor the result.
"""
...
def truediv(self, x0: T, x1: T) -> T:
"""True division between floats. Integer inputs are NOT valid. To
do Python-style (int, int) -> float division, use int_truediv"""
...
def int_truediv(self, x0: T, x1: T) -> T:
"""True division between integers. This is NOT the same as promoting
to float and doing integer division, there is a bespoke algorithm for
doing the division in higher precision than the above.
"""
...
def mod(self, x0: T, x1: T) -> T:
"""C-style modulus, take sign from LHS (x0)."""
...
def remainder(self, x0: T, x1: T) -> T:
"""Python-style modulus, take sign from RHS (x1)."""
...
def square(self, x0: T) -> T:
...
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
) -> None:
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# In CUDA, optimized implementations of other mathematical operations are
# offered separately via libdevice for double precision computation (in
# Triton, these go to tl.math rather than tl). We lower to these
# operators when doing FP64 on CUDA. Note that some operators
# unconditional go to tl.math.
#
# TODO(ezyang): Is this really the best way to do this? What if we have
# abs internally route to tl.math automatically when given a double
# precision input? One reason is that when doing codegen, we often don't
# know what the dtype of the inputs are! (In principle we do know, but
# for many analyses it's not conveniently available.)
def libdevice_abs(self, x0: T) -> T:
...
def libdevice_exp(self, x0: T) -> T:
...
def libdevice_sqrt(self, x0: T) -> T:
...
def libdevice_cos(self, x0: T) -> T:
...
def libdevice_sin(self, x0: T) -> T:
...
def libdevice_sigmoid(self, x0: T) -> T:
...
def libdevice_log(self, x0: T) -> T:
...
# halide-only
def halide_clamp(self, value: T, size: sympy.Expr, check: bool) -> T:
raise NotImplementedError
# triton-only
def inline_asm_elementwise(
self,
*inputs: T,
asm: str,
constraints: Optional[str] = None,
dtype: torch.dtype = torch.float32,
is_pure: bool = True,
pack: int = 1,
) -> T:
...
def output(self, x0: T) -> None:
"""This is a fake op used in analysis but not codegen"""
...
def placeholder(self, index: int) -> T:
"""This is a fake op used in analysis but not codegen"""
...
_ignore_op_re = re.compile(r"_.*|paren").fullmatch
def list_ops(cls: type[Any]):
return OrderedSet([x for x in dir(cls) if not _ignore_op_re(x)])
OP_NAMES = list_ops(OpsHandler)
class DefaultHandler:
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
"""
Default implementation for all ops. Override in a subclass to
provide generic op behavior.
Args:
target: name of the op, see OpHandler.target
args: positional args passed to the op
kwargs: keyword args passed to the op
Returns:
return value of the op
"""
raise NotImplementedError
def __getattr__(self, name: str) -> Any:
def fallback(*args: Any, **kwargs: Any) -> Any:
return self._default(name, args, kwargs)
# would like to remove this function entirely, but it's used in MTIA backend
warnings.warn(f"undefined OpHandler.{name}, please add missing op schema")
return fallback
@staticmethod
def _call_default(target: str):
def call_default(self, *args, **kwargs):
return self._default(target, args, kwargs)
call_default.__name__ = target
return call_default
@classmethod
def _init_cls(cls):
for target in OP_NAMES:
setattr(cls, target, cls._call_default(target))
DefaultHandler._init_cls()
class NoopHandler(DefaultHandler):
name = "NoopHandler"
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return None
@staticmethod
def masked(mask, body, other) -> None:
return None
@staticmethod
def frexp(x) -> tuple[None, None]:
return (None, None)
@staticmethod
def scan(dtypes, combine_fn, values) -> tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def sort(dtypes, values, stable, descending) -> tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy.S.Zero
if TYPE_CHECKING:
class _typecheck_NoopHandler(NoopHandler, OpsHandler[None]):
pass # mypy will error if we got any of the signatures wrong
class BasicMathOps:
@staticmethod
def add(a, b):
return f"{a} + {b}"
@staticmethod
def sub(a, b):
return f"{a} - {b}"
@staticmethod
def mul(a, b):
return f"{a} * {b}"
@staticmethod
def floordiv(a, b):
return f"{a} // {b}"
@staticmethod
def truediv(a, b):
return f"{a} / {b}"
@staticmethod
def mod(a, b):
# careful, depending on target semantics varies
return f"{a} % {b}"
@staticmethod
def pow(a, b):
return f"{a} ** {b}"
@staticmethod
def lshift(a, b):
return f"{a} << {b}"
@staticmethod
def rshift(a, b):
return f"{a} >> {b}"
@staticmethod
def and_(a, b):
return f"{a} & {b}"
@staticmethod
def or_(a, b):
return f"{a} | {b}"
@staticmethod
def xor(a, b):
return f"{a} ^ {b}"
@staticmethod
def eq(a, b):
return f"{a} == {b}"
@staticmethod
def ne(a, b):
return f"{a} != {b}"
@staticmethod
def lt(a, b):
return f"{a} < {b}"
@staticmethod
def gt(a, b):
return f"{a} > {b}"
@staticmethod
def le(a, b):
return f"{a} <= {b}"
@staticmethod
def ge(a, b):
return f"{a} >= {b}"
@staticmethod
def neg(a):
return f"-{a}"
class MockHandler(BasicMathOps, DefaultHandler):
name = "MockHandler"
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
fargs = [*map(_arg_str, args)]
for k, v in kwargs.items():
fargs.append(f"{k}={_arg_str(v)}")
return f"ops.{name}({', '.join(fargs)})"
@staticmethod
def masked(mask, body, other) -> str:
return f"ops.masked({mask}, {body()}, {other})"
@staticmethod
def frexp(x):
return (f"ops.frexp({x})[0]", f"ops.frexp({x})[1]")
@staticmethod
def scan(dtypes, combine_fn, values):
return tuple(
f"ops.scan({dtypes}, {combine_fn}, {values})[{i}]"
for i in range(len(values))
)
@staticmethod
def sort(dtypes, values, stable, descending):
return tuple(
f"ops.sort({dtypes}, {values}, stable={stable}, descending={descending})[{i}]"
for i in range(len(values))
)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy_index_symbol(str(index_var))
if TYPE_CHECKING:
class _typecheck_MockHandler(MockHandler, OpsHandler[str]):
pass # mypy will error if we got any of the signatures wrong
class KernelFormatterHandler(DefaultHandler):
def __init__(self, parent_handler):
self.parent_handler = parent_handler
self._output = IndentedBuffer(1)
self.var_counter = itertools.count()
@staticmethod
def ir_to_string(ir_fn, index, rindex=None) -> str:
from .ir import FlexibleLayout
from .virtualized import V
args = [index, rindex] if rindex is not None else [index]
names = ["index", "rindex"] if rindex is not None else ["index"]
formatter = KernelFormatterHandler(MockHandler())
with formatter._output.indent(-1):
formatter._output.writeline(f"def inner_fn({', '.join(names)}):")
for name, arg in zip(names, args):
if arg:
lhs = ", ".join(
[
str("_" if isinstance(v, (int, sympy.Integer)) else v)
for v in arg
]
)
formatter._output.writeline(f"{lhs} = {name}")
with V.set_ops_handler(formatter), patch.object(
FlexibleLayout, "allow_indexing", True
):
result = ir_fn(*args)
return formatter.getvalue(result)
def indirect_indexing(self, *args, **kwargs) -> sympy.Symbol:
return self.parent_handler.indirect_indexing(*args, **kwargs)
def _write(self, line):
# replace line with a new variable name
varname = f"tmp{next(self.var_counter)}"
self._output.writeline(f"{varname} = {line}")
return varname
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return pytree.tree_map(
self._write, getattr(self.parent_handler, name)(*args, **kwargs)
)
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[str, tuple[str, ...]],
) -> Union[str, tuple[str, ...]]:
line = self.parent_handler.reduction(dtype, src_dtype, reduction_type, value)
num_values = reduction_num_outputs(reduction_type)
varnames = [f"tmp{next(self.var_counter)}" for _ in range(num_values)]
self._output.writeline(f"{','.join(varnames)} = {line}")
return tuple(varnames) if num_values > 1 else varnames[0]
def getvalue(self, result):
self._output.writeline(f"return {result}")
return self._output.getvalue()
if TYPE_CHECKING:
class _typecheck_KernelFormatterHandler(KernelFormatterHandler, OpsHandler[str]):
pass # mypy will error if we got any of the signatures wrong
class WrapperHandler(DefaultHandler):
def __init__(self, inner: Any):
self._inner = inner
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return getattr(self._inner, name)(*args, **kwargs)
class AddParenHandler(WrapperHandler):
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
val = getattr(self._inner, name)(*args, **kwargs)
if not val or isinstance(val, (sympy.Expr, tuple, list)):
return val
return f"({val})"
class OpCountResult(NamedTuple):
num_ops: int
used_ops: OrderedSet[str]
read_buffers: list[str]
nontrivial_read_count: int
class OpCounterCSE(DefaultHandler):
"""Shim to count how many ops are used"""
def __init__(self, inner):
super().__init__()
self.parent_handler = inner
self.op_count = 0
self.var_names = {}
self._used_ops: OrderedSet[str] = OrderedSet()
self._read_names: list[str] = []
self._nontrivial_read_count = 0
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
self._used_ops.add(name)
return pytree.tree_map(
self._update_count, getattr(self.parent_handler, name)(*args, **kwargs)
)
def _update_count(self, val):
varname = self.var_names.get(val)
if not varname:
varname = f"tmp{self.op_count}"
self.op_count += 1
self.var_names[val] = varname
return varname
def indirect_indexing(self, *args, **kwargs):
self._used_ops.add("indirect_indexing")
return self.parent_handler.indirect_indexing(*args, **kwargs)
def load(self, name: str, index: sympy.Expr) -> str:
val = self.parent_handler.load(name, index)
if val not in self.var_names:
self._used_ops.add("load")
self._read_names.append(name)
if not isinstance(index, (sympy.Integer, int)):
self._nontrivial_read_count += 1
return self._update_count(val)
def load_seed(self, name: str, offset: T):
val = self.parent_handler.load_seed(name, offset)
if val not in self.var_names:
self._used_ops.add("load_seed")
self._read_names.append(name)
return self._update_count(val)
def bucketize(
self,
values: T,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
"""
See [Note: Inductor bucketize op]
"""
val = self.parent_handler.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
if val not in self.var_names:
self._used_ops.add("bucketize")
self._read_names.append(boundaries[0])
if sorter is not None:
self._read_names.append(sorter[0])
return self._update_count(val)
def getvalue(self):
return OpCountResult(
self.op_count, self._used_ops, self._read_names, self._nontrivial_read_count
)
if TYPE_CHECKING:
class _typecheck_OpCounterCSE(OpCounterCSE, OpsHandler[str]):
pass # mypy will error if we got any of the signatures wrong
class ExtractConstantsHandler(NoopHandler):
def __init__(self, device):
self.device = device
def constant(self, value: Any, dtype: torch.dtype) -> torch._inductor.ir.Constant:
from torch._inductor import ir
return ir.Constant(value=value, dtype=dtype, device=self.device)
if TYPE_CHECKING:
class _typecheck_ExtractConstantsHandler(ExtractConstantsHandler, OpsHandler[Any]):
pass # mypy will error if we got any of the signatures wrong
class SimpleCSEHandler(WrapperHandler):
"""Wraps the underlying handler with a CSE pass
NOTE: Compared to codegen level CSE this is simplified as it
doesn't support stores which require load cache invalidation.
"""
def __init__(self, inner: Any):
super().__init__(inner)
self.cse_cache: dict[str, Union[Any, tuple[Any, ...]]] = {}
self.mock = MockHandler()
def indirect_indexing(self, *args, **kwargs) -> sympy.Expr:
return super().indirect_indexing(*args, **kwargs) # type: ignore[misc]
def store(self, *args, **kwargs) -> None:
raise NotImplementedError("store not implemented")
def store_reduction(self, *args, **kwargs) -> None:
raise NotImplementedError("store not implemented")
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
key = getattr(self.mock, name)(*args, **kwargs)
val = self.cse_cache.get(key)
if val is not None:
return val
val = getattr(self._inner, name)(*args, **kwargs)
self.cse_cache[key] = val
return val
if TYPE_CHECKING:
class _typecheck_SimpleCSEHandler(SimpleCSEHandler, OpsHandler[Any]):
pass # mypy will error if we got any of the signatures wrong